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Abstract

Consider a 2D smooth closed curve evolving in time, the
skeleton (medial axis) of the figure bounded by the curve,
and the evolute of the curve. A new branch of the skeleton
can appear / disappear when an evolute cusp intersects the
skeleton. In this paper, we describe exact conditions of the
skeleton bifurcations corresponding to such intersections.
Similar results are also obtained for 3D surfaces evolving
in time.

Introduction

The skeleton or medial axis of a planar figure is the clo-
sure of the set of centers of maximal disks contained inside
the figure, i.e., those discs contained in the figure but in no
other disc in the figure. The skeleton is an important shape
descriptor invented by Blum [6]. It is extensively used in
connection with human shape perception theories [5], [9].
Fig. 1 shows simple closed curves mimicking silhouettes of
a bison, a fish, and a human and their skeletons.

Figure 1. Simple closed curves mimicking silhou-
ettes of a bison, a �sh, and a human and their
skeletons.

Fig. 2 demonstrates the description of the skeleton of a
figure as the set of centers of maximal disks inscribed in the
figure.

Figure 2. Left: a \bison" �gure, its skeleton, and
a maximal disk inscribed in the �gure; the bold
point is a point of tangency betw een the disk and
the boundary of the �gure. Right: the skeleton
of a �gure can be de�ned as the set of centers of
maximal disks inscribed in the �gure.

Consider a figure evolving in time. How does the skele-
ton of the figure change? An analytical description of how
smooth points of the skeleton evolve under a general bound-
ary evolution is given in [1] for the 2D case. This paper ad-
dresses conditions of topological changes of the skeleton.
Fig. 3 demonstrates two topological changes of the skeleton
of an evolving curve: in the “head” and in the “chest”. In
this paper, we deal with the skeleton bifurcations similar to
the bifurcation happened in the “head” where a new skele-
ton branch has grown from an inner point of the skeleton.

Let us recall that the best approximation of a curve at its
point P by a circle is given by the circle of curvature called
also the osculating circle at P [12]. If P is an inflection
point (where the curvature is zero), the circle of curvature
degenerates into the tangent line at P . The locus of the
centers of curvature of a given curve is called the evolute of
the curve. The evolute of a smooth curve has singularities
(so-called cusps).

A rigorous mathematical description of the relations be-
tween the skeleton and the evolute (the focal surface in 3D)
of a simple closed curve (a simple closed surface in 3D)
evolving in time constitutes the main results of the paper.

The 2D version of the skeleton branching theorem de-
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Figure 3. Two di�erent skeleton bifurcations hap-
pened in the \head" and in the \chest". In the
\head" the new skeleton branch has grown from
an inner point of the skeleton.

scribed in the next section was discovered while playing
with the Java 2D Curve Simulator 1 described in [14].

2D Skeleton Branching Theorem

Let us consider a planar curve r = r(s) parameterized
by arc length s. To study the shape of the evolute of the
curve at a small vicinity of a point r(s) we expand r(s+�)
into Taylor series with respect to �, �� 1. Let

r
0 = t and n = t

?

compose the Frenet frame at r = r(s). The evolute is given
by

e(s) = r(s) +
n(s)

k(s)
;

where k(s) is the curvature of the curve at r(s). According
to the Frenet formulas

t
0 = k n; n

0 = �k t
we have

r
0 = t; r

00 = t
0 = k n; r

000 = (kn)0 = k0n� k2t:

It yields
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�2
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1http://www.u-aizu.ac.jp/�m5031126/Research/CCurve/CCurve.html

Similarly,
n
0 = �kt;

n
00 = (�kt)0 = �k0t� k2n;

n
000 = (�k00 + k3) t� 3k0k n;
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k(s+ �) = k(s) + �k0 +
�2

2
k00 +O(�3);

1
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�
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For the evolute point e(s+ �) we have

e(s+ �) = r(s+ �) +
n(s+ �)

k(s+ �)
= e(s) + (1)

+ t

�
�2

k0

2k
+ �3

�
k00

3k
� k0 2
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�
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� k00

2k2

�
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�

Thus, if k0(s) 6= 0, in a small vicinity of the center of cur-
vature r(s) + n(s)=k(s) the evolute is approximated by a
parabola tangent to the normal n(s) (see the left image of
Fig. 4). If k0(s) = 0 then (1) simplifies into

e(s+ �)� e(s) = (2)

= t

�
�3

k00

3k
+O(�4)

�
+ n

�
��2 k

00

2k2
+O(�3)

�
:

For a generic curve k0 and k00 do not vanish simultaneously.
Thus, in a small vicinity of the center of curvature, the evo-
lute is approximated by a semicubic parabola y3 = Ax2

tangent to the normal n(s). See the middle and right im-
ages of Fig. 4.
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Figure 4.

A vertex of a smooth curve is a point of the curve where
the curvature takes an extremal value, k0 = 0.
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Proposition 1 The evolute of a curve r(t) has a cusp at
t0 if and only if r(t0) is a vertex of the curve. The cusp
on the evolute is pointing towards or away from the vertex
according as the absolute value of the curvature has a local
minimum or maximum at t0.

Now the proposition follows immediately from (2). A dif-
ferent proof can be found in [10].

For a generic curve, the osculating circles centered at or-
dinary evolute points intersect the curve. The osculating
circles centered at the cusps of the evolute have either inner
or outer contacts with the curve. The previous proposition
can be reformulated as follows.

Proposition 2 Given a generic curve, the osculating circle
centered at an evolute cusp pointing towards (away from)
the curve has an inner (outer) contact with the curve.

The circle of curvature centered at a skeleton endpoint
can be considered as a limit of the inner bitanget circles
(i.e., touching the curve at least twice) whose centers form
the skeleton. Thus the circle is osculating and it has an inner
contact with the boundary of the figure. If the boundary of
the figure is oriented by its inner normal, the endpoints of
the skeleton correspond to positive maxima of the curvature
of the boundary and we arrive at the following result.

Proposition 3 The endpoints of the skeleton of a figure are
located at cusps of the evolute of the boundary of the fig-
ure. Those cusps are pointing towards the boundary of the
figure.

However the evolute cusps do not necessary coincide
with the endpoints of the skeleton of the figure bounded by
the curve. If the osculating circle centered at a cusp of the
evolute does not lie inside the figure, then the cusp is not a
skeleton endpoint. Fig. 5 suggests the following result.

Theorem 1 Given a generic closed curve, consider the seg-
ment connecting an evolute cusp and its associated curve
vertex. The cusp is an endpoint of the skeleton if and only if
the segment does not intersect the skeleton.

Before proving the theorem we need the following result.

Proposition 4 An inner circle of a generic closed curve has
a high-order contact with the curve if and only if the circle
center is a skeleton endpoint.

Following [7] consider the family of distance-squared func-
tions

dist2Q(P ) = kP �Qk2;
where P lies on the curve and Q lies inside the curve, Q pa-
rameterizes the family. It can be shown, see, for example,
[7], that Q lies on the evolute if and only if its distance-
squared function has a degenerate critical point. It is easy

Figure 5. Left: A closed curv e;its skeleton and
ev olute; an osculating circle centered at a cusp of
the evolute and its radial segment connecting the
cusp and the tangency point; an inner bitangent
circle touching the curve at the same point as the
osculating circle does and, therefore, contained by
the osculating circle. Right: the curve is modi�ed
such that the radial segment connecting the cusp
and the tangency point intersects the skeleton;
note appearance of a new skeleton branch ended
at the cusp.

to see that the function has two equal absolute minima if
and only if Q is a generic point of the skeleton of the figure
bounded by the curve. Let us move Q along the skeleton to-
wards a skeleton endpoint. A degenerate absolute minimum
appears when Q reaches the endpoint and the absolute min-
ima merge. See Fig. 6. An inner circle has a high-order
contact with the curve if and only if the distance-squared
function with Q located at the center of the circle has a de-
generate absolute minimum. This proves the proposition.
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Figure 6. Zoo of distance functions.

PROOF OF THEOREM 1. If the segment crosses the skele-
ton, the intersection point is the center of an inner bitangent
circle. The osculating circle associated with the cusp con-
tains the bitangent circle and, therefore, cannot lie inside
the curve. Assume now that the segment does not cross
the skeleton and consider the point of tangency between the
osculating circle centered in the cusp and the curve. The
radius of the circle is equal to or less then the radius of
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the bitangent circle associated with the point of tangency.
The osculating circle has a high-order inner contact with
the curve and, therefore, is a maximal circle fitted inside the
curve. Thus its center, the cusp, lies on the skeleton. An
inner bitangent circle of a generic closed curve has a high-
order contact with the curve if and only if the circle center
is a skeleton endpoint. Thus the cusp is an endpoint of the
skeleton. This completes the proof.

The above theorem implies the following result describ-
ing dynamical properties of the skeleton of a figure evolving
in time.

2D Skeleton Branching Theorem. For a simple closed
curve evolving in time, consider the motion of an evolute
cusp which lies inside the curve and points towards the
curve (i.e., corresponds to a positive maximum of the cur-
vature, if the curve is oriented by its inner normal). As-
sume that the cusp is moving toward the curve and the
segment connecting the cusp and its associated curve point
intersects the skeleton at one point only. When the cusp
crosses the skeleton, a new branch of the skeleton is born
with its endpoint at the cusp.

skeleton skeleton skeleton

ev
olute

ev
oluteev

olute

curve
curve

curve

Fig. 7 visualizes the 2D Skeleton Branching Theorem.

3D Skeleton Branching Theorem

Focal surface. Consider a smooth generic surface. De-
note by kmax and kmin the largest and the smallest principal
curvatures, respectively, kmax � kmin. The principal cen-
ters of curvature are the points situated on the surface nor-
mals at the distances 1=kmax and 1=kmin from the surface.
The loci of the principal centers from the focal surface. The
focal surface consists of two sheets corresponding to the
maximal and minimal principal curvatures.

The focal surface is the 3D analog of the evolute and has
singularities. The singularities of the focal surface consists
of space curves called the focal ribs. Near a point of a focal
rib the focal surface can be locally represented in the para-
metric form (c1t

3; c2t
2; s), where c1 6= 0 6= c2, in proper

(curvilinear) coordinates (s; t). See Fig. 8 for a typical focal
rib.

The focal ribs themselves may have singularities.
The surface curves corresponding to the focal ribs are

natural generalization of the curve vertices for surfaces.

Figure 8. A typical focal rib.

For a surface given parametrically r = r(u; v), its focal
surface is described by:

f(u; v) = r(u; v) +
n(u; v)

k(u; v)
; k = kmax; kmin; (3)

where n(u; v) is the oriented normal (without loss of gen-
erality, we do not consider parabolic points in (3)).

Let at a point P on the surface the coordinates u, v be
chosen so that the tangent vectors @r=@u and @r=@v coin-
cide with the principal directions tmax and tmin. If P cor-
responds to a singular point on the focal surface, then the
cross product

@f

@u
� @f

@v
=

=
@r

@u

@k

@u

k � kmin

k3
+

@r

@v

@k

@v

k � kmax

k3

vanishes when k is either kmax or kmin. This proves the
following statement

Proposition 5 For a smooth generic surface the singulari-
ties of the focal surface (focal ribs) correspond to the lines
on the surface where either principal curvature has ex-
trema along its associated principal direction and the points
where the principal curvatures are equal (umbilics).

See also [10] where a different proof of the above proposi-
tion is given.

Following [8] let us call the surface curves corresponding
to the focal ribs the principal curvature extremum curves.

Skeleton. Consider a 3D figure F bounded by a
piecewise-smooth closed surface @F . The skeleton of F
is the closure of the set of points inside F that have more
than one closest point among the points of @F .

One can define the skeleton of F as the locus of centers
of maximal balls: balls inside F that are not themselves
enclosed in any other ball inside F .

Various elements of the skeleton of a figure are shown
schematically in Fig. 9 (we use the terminology accepted in
[11] and [13]).

The skeletal edge of the skeleton of a figure is a con-
nected space curve consisting of the skeletal points whose
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Figure 7. A curve, its ev olute, and skeleton. Left: the sk eleton is a curvilinear segment with tw o its endpoints
located at evolute cusps; the evolute cusp pointing towards the skeleton does not serve as a skeleton endpoint.
Middle: the cusp touches the skeleton. Right: when the cusp intersects the skeleton and a new skeleton branch
with its endpoint at the cusp appears. Note that another evolute cusp does not give a birth to a skeleton
branch when it intersects the skeleton because the segment connected that cusp and its associated curve
vertex in tersects the skeleton.

skeleton su
rfa

ce
skeletal sheets

seam dart point junction point

skeletal edges

Figure 9.

small neighborhoods on the skeleton are topologically
equivalent to a half-disk. One can also describe the skele-
tal edge points as the points whose maximal spheres have a
single contact with the surface bounding the figure. A skele-
tal sheet is a connected component of the skeletal points
whose small neighborhoods on the skeleton are topologi-
cally equivalent to a disk. A seam point is a skeletal point
whose small neighborhood on the skeleton is topologically
equivalent to a disc sewn with a half-disk. A dart point is a
skeletal point whose small neighborhood on the skeleton is
topologically equivalent to a disc sewn with a quarter-disk.
A junction point is a skeletal point whose small neighbor-
hood on the skeleton is topologically equivalent to a disc
sewn with three quarter-disks. See Fig. 9.

For a smooth oriented surface, let us define the ridges
as the loci of the positive maxima of the maximal principal
curvature along its curvature line.

Relations between the skeletal edges, the ridges, and cer-
tain focal ribs are described by the following proposition
(see [3], [2], and [4, Appendix]).

Proposition 6 Consider a bounded 3D figure F whose
boundary, @F , is smooth and oriented by its inner normal.
The skeletal edges form a proper subset of those focal ribs
associated with the maximal principal curvature which are
pointing towards @F . Those ribs correspond to the ridges

on @F .

These relations between the ridges, the focal ribs asso-
ciated with kmax and pointing towards the surface, and the
skeletal edges are demonstrated schematically in Fig.10 and
for an elliptic paraboloid in Fig. 11.

curvature

line

principal
direction

ridge

norm
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skeleton

foca
l ri
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− fo

cal

    
   s

urfa
ce

max

Figure 10. Relations betw een the focal ribs, cur-
vature lines, and ridges are shown schematically.

A proof of Proposition 6 is sketched in the following
three subsections.

Ridges. Consider a smooth surface. For a given non-
umbilic point P on the surface let us choose coordinates
in the space so that P is at the origin, the (x; y)-plane is the
tangent plane to the surface at P , the principal directions
tmax and tmin coincide with x and y axes, respectively, and
the normal n coincides with z-axis. Then the surface is
expressible in the Monge form as the graph of a generic
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Figure 11. A surface (grey), a ridge on the sur-
face (dark grey), the focal surface sheet associ-
ated with kmax (ligh tgrey), and the skeleton of
the �gure bounded by the surface (grey).

smooth function z = F (x; y), where

F (x; y) =
1

2

�
�x2 + �y2

�
+

1

6

�
ax3 + 3bx2y + 3cxy2 +

+ dy3
�
+

1

24

�
ex4 + 4fx3y + : : :

�
+O(x; y)5

with � = kmax(0; 0), � = kmin(0; 0), � > �. Let the
surface orientation be chosen so that the maximal principal
curvature is nonnegative at P : � � 0.

Since the vectors (1; 0) and (0; 1) represent tmax and
tmin at P , respectively, then

@kmax

@tmax

(0; 0) = a
@kmax

@tmin

(0; 0) = b (4)

Let emax = @kmax=@tmax. The extrema of the maximal
principal curvature along its curvature line are given in the
implicit form by the zeros of emax.

The curvature line associated with kmax is locally de-
scribed by the problem

dy

dx
=

bx+ cy

�� �
+O(x; y)2; y(0) = 0:

Therefore, y0(0) = 0, y00(0) = b=(� � �) and in a neigh-
borhood of the origin the curvature line is approximated by
the parabola

y =
bx2

2(�� �)
:

It allows to compute the Taylor series expansion of kmax at
the origin along the associated curvature line

�+ ax+

�
�3�3 + e+

3b2

�� �

�
x2

2
+O(x3) (5)

Analyzing asymptotic expansion (5) we obtain that P is a
generic ridge point (the maximal principal curvature has a
positive maximum along its curvature line) iff

� > 0; a = 0; A = �3�3 + e+
3b2

�� �
< 0: (6)

Note that

A =
@emax

@tmax

(0; 0) =
d2kmax

ds2max

(0; 0);

where smax is the arclength of the curvature line associated
with kmax.

If P is a ridge point, the tangent direction to the ridge at
P is given by fAx+By = 0; z = 0g, where

B =
@emax

@tmin

(0; 0) = f +
3bc

�� �
:

Contact with osculating spheres. Consider the intersec-
tion curve between the surface and the plane fy = �zg,
where � is a parameter. The curve is locally described by
the equation y = ��x2=2 + : : : . The Taylor expansion of
the curvature of the curve is the product of

p
1 + �2 and

�+ ax+
��3�3(1 + �2) + 3�2��2 +

+ 6b��+ e
�x2
2

+O(x3) (7)

Thus, if the origin is a ridge point (a = 0), the type of the
extremum of the curvature along the intersection curve is
defined by the sign of

�3�3(1 + �2) + 3�2��2 + 6b��+ e:

This expression is a quadratic polynomial in �. The dis-
criminant is given by

D = 3�2(�� �)A;

where A is defined in (6). The discriminant is negative if
and only if the maximal principal curvature has a maxi-
mum along the intersection curve between the surface and
the plane fy = �zg for any �. Now from (5) it follows
that the osculating spheres (spheres of curvature) associated
with kmax have inner contacts with the surface at the ridge
points.

Fig. 12 shows the same surface, ridge, and focal sheet as
in Fig. 11 and an osculating sphere touching the surface at a
ridge point.
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Figure 12. A surface (grey), a ridge on the sur-
face (dark grey), the focal surface sheet associ-
ated with kmax (ligh t grey), the skeleton of the
�gure bounded by the surface (grey), an osculat-
ing sphere touching the surface at a ridge point
(dark gray). The sphere has a single point con-
tact with the surface.

Ridges and Focal Ribs. The intersection between the
caustic sheet associated with kmax and the plane fy = 0g
gives a curve described locally by

x = � A

3�
t3 +O(t4); z =

1

�
� A

2�2
t2 +O(t3):

At a neighborhood of the point (0; 0; 1=�) the intersection
curve is locally a semicubical parabola. Thus the cuspidal
edges (ribs) of the caustic sheet associated with kmax and
pointing towards the surface correspond to the ridges.

3D Skeleton Branching Theorem. Consider a closed
surface and a figure bounded by the surface. The skeletal
edges of the skeleton of the figure are not necessarily lo-
cated at focal ribs. If the sphere of curvature (osculating
sphere) centered at a focal rib point does not lie inside the
figure, then the point is not a skeletal edge point. Similarly
to the 2D case we arrive at the following result.

Theorem 2 Given a generic closed surface oriented by its
inner normal, consider a point on a focal rib associated
with the maximal principal curvature and pointing towards
the surface (i.e., corresponding to a ridge). The point be-
longs to a skeletal edge if and only if the segment connect-
ing the point and its associated ridge point does not cross
the skeleton.

We can reformulate this theorem to describe bifurcations
of the skeleton of a figure evolving in time.

3D Skeleton Branching Theorem. Consider an evolving
smooth closed surface oriented by its inner normal and
a focal rib associated with the maximal principal curva-
ture, pointing towards the surface (i.e., corresponding to
a surface ridge). Let the rib touch and then intersect the
skeleton during the surface evolution. Consider the rib
point where the first contact between the skeleton and the
rib occurs and the segment connecting the rib point and
its associated surface point. Assume that the number of
intersections between the segment and skeleton changes
from one to zero during the evolution. Then a new skele-
tal sheet is born at the instant when the rib touches and
intersects the skeleton.
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