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Figure 1: A skeleton-driven mesh deformation. (a) A dragon model (100K triangles), its skeletal mesh (6K triangles), and control
points used to produce a global deformation of the skeletal mesh. (b) A free-form deformation of the skeletal mesh. (c) Reconstruction
of an approximate dragon model (6K triangles), from the deformed skeleton. (d): The final deformation is obtained by applying DSS
[18] to the approximate dragon model; coloring by mean curvature is used for a quality evaluation of the deformed mesh.

ABSTRACT
In this paper, we propose a new scheme for free-form skeleton-
driven global mesh deformations. First a Voronoi-based skeletal
mesh is extracted from a given original mesh. Next the skeletal
mesh is modified by free-form deformations. Then a desired global
shape deformation is obtained by reconstructing the shape corre-
sponding to the deformed skeletal mesh. We develop a mesh fair-
ing procedure allowing us to avoid possible global and local self-
intersections of the reconstructed mesh. Finally, using a displaced
subdivision surface representation [18] improves the speed and ro-
bustness of our approach.
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1. INTRODUCTION
Local and global free-form shape deformation techniques are im-

portant for many computer graphics and shape modeling applica-
tions.
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Multiresolution mesh representations [26, 17, 14, 16, 18] are of-
ten used for modeling global natural-looking shape deformations.
Recently skeleton-driven global free-form shape deformations drew
much attention [19, 21, 7, 6] because they are well-suited for large-
scale shape deformations and, therefore, can be used in numerous
applications in the computer game industry.

In this paper, we develop a new scheme for free-form skeleton-
driven global shape deformations. Given a triangle mesh approx-
imating 3D shape, first we build a Voronoi-based skeletal mesh.
The skeletal mesh inherits the connectivity of the original mesh
and there is one-to-one correspondence between the vertices of the
original and skeletal meshes. We use mesh evolutions in order to
improve the skeletal mesh. The original mesh is then represented
as the set of displacements applied to the vertices of the improved
(smoothed) skeletal mesh. The mesh deformation process is com-
bined from deformations of the smoothed skeletal mesh and the
displacement field. We also use mesh evolutions to remove local
and global self-intersections of the deformed mesh. Finally, since
our shape representation resembles the displaced subdivision sur-
faces [18], we enrich our mesh deformation approach by a multi-
scale technique. Fig. 1 above gives some impression on how our
approach works.

The basic (and very simple) idea of our skeleton-based approach
to global shape deformations is sketched in Fig. 2.
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Figure 2: Skeleton-based shape deformation.



Notice that usually a local shape deformation corresponds to a
skeleton bifurcation (branching) while a global shape deformation
corresponds to skeleton bending, as seen in Fig. 3.
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Figure 3: Local vs. global shape deformations. Left: local
shape deformations usually produce new branches of the skele-
ton. Right: skeleton bendings correspond to natural-looking
global shape deformations.

The rest of the paper is organized as follows. In Section 2 we ex-
plain how to construct the skeletal mesh. In Section 3 we describe
our global skeleton-based shape deformation approach. Section 4
is devoted to combing our approach with the DSS technique [18].
We conclude in Section 5.

2. VORONOI-BASED SKELETAL MESH
A skeleton (medial axis) of a figure is the closure of those points

inside the figure that have more than one closest point among the
points of the boundary of the figures. The skeleton was originally
introduced by Blum [8, 9] for 2D shapes in order to provide with
a symmetry-based shape representation for shape perception and
recognition purposes. In 3D, the skeleton has been recently studied
in connection with a research on shape organization [13] and shape
manipulation [22, 7, 6].

Given an oriented surface, the skeleton can be also described
as the set of singularities of the signed distance function from the
surface [4]. Thus we distinguish two skeletons of an oriented sur-
face, the inner skeleton and the outer skeleton (one of them may be
empty, for example, for a surface bounding a convex figure).

Figure 4: Left: a closed 2D curve and its skeleton. Middle:
the skeleton is formed by the centers of all inner bitangent cir-
cles. Right: the skeleton is approximated by the vertices of the
Voronoi diagram generated by points scattered densely over the
curve.

The skeleton of a figure is very sensitive to small perturbations
of the boundary of the figure: small perturbations of the bound-
ary may result in large changes of the skeleton structure. Practical
extraction of the skeleton of a 3D shape is usually based on 3D
Voronoi diagram techniques [23, 2], see also references therein.
Fig. 4 presents a 2D example demonstrating how the skeleton of
a figure can be approximated by Voronoi vertices corresponding
to points scattered densely over the boundary of the figure. Fig. 4
demonstrates also how sensitive the skeleton of a figure is with re-
spect to small perturbations of the boundary of the figure.

Recently several improvements over the basic technique devel-
oped in [2] were proposed [3, 12, 15]. For our needs, we adapt the
approach developed very recently in [15] where it was proposed to
approximate the skeleton of a mesh by a skeletal mesh having the
same connectivity as the original mesh. The vertices of the skele-
tal mesh are in one-to-one correspondence with the vertices of the
original triangle mesh and the skeletal mesh inherits the connec-
tivity of the original mesh. It allows for editing the skeleton by
standard mesh processing tools.

Given a mesh M, our first goal is to extract an approximate
skeletal mesh S such that

M = S + dN, (1)

where N is the field of unit mesh normals defined at the vertices
of M and d is the set of distances from the vertices of M to the
corresponding vertices of S along N.

Relation (1) is the core of our approach. It allows us to edit the
original mesh M via modifying its skeletal mesh S. Below we
explain how to achieve a robust extraction of the skeletal mesh and
build relation (1).

Mesh smoothing. Since the skeleton of a shape approximated
by a mesh is very sensitive to the mesh quality, we first apply the
bilaplacian tangent flow [24] to the mesh in order to improve the
mesh quality. If the step-size of the bilaplacian tangent flow is suf-
ficiently small, the flow keeps almost does not affect the mesh ge-
ometry while improving the aspect ratios of the mesh triangles.

Figure 5: Left: a cow mesh and its inner skeleton, notice that
the skeleton intersects the cow mesh. Right: the cow mesh
improved by several iterations of the bilaplacian tangent flow
and its skeleton improved original cow mesh via 100 bilapla-
cian tangent flow provides a good skeleton mesh.

This preprocessing step improves dramatically the quality of the
skeleton, as demonstrated in Fig. 5. The left image shows an origi-
nal cow mesh and its inner skeletal mesh. The skeletal mesh inter-
sects the cow mesh while the true skeleton is located inside the cow
model. The cow mesh in the right image is improved by several it-
erations of the bilaplacian tangent flow. The inner skeletal mesh of
the improved cow mesh provides with a much better approximation
of the true skeleton.

Extraction of skeletal mesh. Given a mesh, we use the Quick-
hull algorithm [5] to extract the Voronoi diagram of the mesh ver-
tices. We estimate the tangent plane at each mesh vertex and use
the mesh orientation in order to distinguish the inner and outer sub-
sets of the Voronoi vertices. We remove the outer Voronoi vertices
and, in the case of an open mesh, those inner vertices which are
located outside some bounding box of the mesh.



In contrast to [2], for each mesh vertex we neglect its Voronoi
pole, the farthest Voronoi vertex of the Voronoi region containing
the mesh vertex. In theory [1] the poles provide a good approxi-
mation of the true skeleton if the original mesh is dense enough.
However, according to our experiments, the poles have poor sta-
bility properties with respect to small perturbations (defects) of the
mesh. Although we do not achieve an accurate reconstruction of
the skeleton, stability is much more important for our purposes than
accuracy.

A point corresponding to a mesh vertex is computed as the arith-
metic mean of the remaining Voronoi vertices of the Voronoi region
containing the mesh vertex. The displacement d ∈ d is computed
as distance between the mesh vertex and its corresponding point.
Then the skeleton vertex corresponding to the mesh vertex is found
as a point situated on the normal at the mesh vertex and displaced
on the distance d from the mesh vertex. The normal at a mesh
vertex is computed as the normalized area-weighting mean of the
normals of the mesh triangles incident to the vertex.

Finally the obtained set of the skeleton vertices is equipped with
the connectivity of the original mesh, as seen in Fig. 6. Roughly
speaking, we do ”vacuum-packing” of the original mesh onto the
skeleton generated by averaged Voronoi poles.

Figure 6: Voronoi-based skeletal mesh. Left: the mannequin
head model and its inner Voronoi vertices. Middle: the man-
nequin head mesh connectivity is used to create the skeletal
mesh. Right: the skeletal mesh (skeleton) of the mannequin
head model.

3. BASIC MESH DEFORMATION PROCESS
Consider a free-form deformation of the skeletal mesh S. In our

implementation we use a set of techniques developed in [25] al-
though other free-form mesh deformations techniques can be used
as well. A direct reconstruction of a deformed mesh from the de-
formed skeletal mesh according to (1) may produce severe self-
intersections of the deformed mesh. So we use a homotopy method
[20] to decompose the deformation into a sequence of L deforma-
tions connecting the original skeletal mesh S0 = S and deformed
skeletal mesh SL:

Sj = S0 + j
SL − S0

L
. (2)

Now the corresponding deformations of the original mesh are com-
puted as

Mj = Sj + dNj−1, j = 1, 2. . . . , L, (3)

where N0 is the field of unit mesh normals for M = M0 and Nj is
the field of unit mesh normals for Mj . The scalar field of displace-
ments d is not changed during the deformation steps. According
to our numerical experiments, the decomposition into L = 3 steps
delivers a satisfactory combination of quality and speed.

3.1 Removing Folds and Protrusions
If a large skeleton deformation is applied, see, for instance, Fig.

7, the resulting deformed mesh ML may have some defects, as

demonstrated in the left images of Fig. 8. In this section, we explain
how to remove such defects of the deformed mesh as folds and
protrusions, as seen in Fig. 9. One possible way to avoid such mesh
defects consists of reconstruction the deformed mesh ML from the
deformed skeleton SL as the envelope of medial balls [3] centered
at the vertices of SL. However it works well only for dense meshes.
So we have chosen a different approach based on mesh evolutions.

Figure 7: A large skeleton-based deformation of a hand model.

Figure 8: Left: zoomed parts of the deformed hand model from
the right image of Fig. 7. Right: fixing mesh defects by (4).

We consider the following mesh evolution

∂M

∂t
= −α42M− F − V, M(0) = ML, (4)

where the negative bilaplacian −∆2 and force −V are used for
mesh relaxation and regularization purposes and force −F pushes
the evolving mesh towards the envelope of the medial balls.

We approximate the bilaplacian operator via the bi-umbrella op-
erator [17]. The parameter α > 0 is not constant. Let us consider a
mesh vertex M and its neighbors, compute the umbrella operators
(vectors) for them, and count the number of those neighbors whose
umbrella vectors form an obtuse angle with the umbrella vector at
M . We assign α = 0.25 to M if the fraction that obtuse angles is



less than 0.3. Otherwise we set α = 0 at M .
We want to define the force F such that −F fits the evolving

mesh to the envelope of the medial balls. For each triangle T of
the deformed skeletal mesh let us consider the convex hull of the
medial balls centered at triangle vertices. A general approach to
compute the convex hull of a set of spheres can be found in [10].
However, in our simple case, the convex hull is computed analyti-
cally: we use the fact that the convex hull can be computed as the
envelop of the balls centered inside the triangle and obtained by the
trilinear interpolation of the balls centered at the vertices. We de-
scribe the envelop as an implicit function. Let us define a function
w = ET (P ) at point P as the value of the implicit function at P .
Now consider a mesh vertex M , the set of mesh triangles incident
with M and their centroids Cj , j = 1, . . . , n. The force F at M is
defined by

F(M) =
1

n

n
∑

j=1

ETj
(Cj)∇ETj

(Cj),

where Tj is a deformed skeletal mesh triangle corresponding to the
mesh triangle with centroid Cj . Notice that the force E∇E attracts
the vertices to the zero level set of E.

The force V is defined as the projection of the bilaplacian vector
on the plane orthogonal to F

V = 42M− (42M ·
F

|F|
)

F

|F|
.

Fig. 9 explains why flow (4) eliminates mesh folds and protru-
sions.
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Figure 9: Effect of (4). Force F pushes the mesh vertices to-
wards the envelope of the medial balls. Two other forces in the
right hand-side of (4), tangential force V and smoothing force
−α42M, are used to eliminate mesh folds and protrusions.

The right images of Fig. 8 demonstrate fixing defects of the de-
formed hand mesh by (4).

3.2 Eliminating Global and Local Self-Inter-
sections

self-intersections, as sketched in Fig. 10. The deformed mesh
still may have global and local self-intersections, as sketched in
Fig. 10.

Local Self-Intersection

Global Self-Intersection

Figure 10: Global and local self-intersections.

Again we use a mesh evolution approach in order to eliminate
global and local self-intersections of the deformed mesh. Consider
a vertex M = (x, y, z) of the deformed mesh and its corresponding
vertex S = (sx, sy, sz) of the deformed skeleton. Let us define the
function

g(x, y, z, S) = (x − sx)2 + (y − sy)2 + (z − sz)
2 − d

2
,

where d is the radius of the medial ball centered at S. Now we
introduce a function f(x, y, z) whose zero level set approximates
the envelope of the medial balls. Let us divide the bounding box
(unit box) uniformly into 20 × 20 × 20 voxels Gl,m,n. We set

hl,m,n(x, y, z) = min {g(x, y, z, S) : S ∈ Gl,m,n} ,

where the minimum is taken over all skeleton vertices S that be-
long to the cell Gl,m,n. Then f(x, y, z) is defined for (x, y, z) ∈
Gl,m,n by

f(x, y, z) =

{

hl,m,n(x, y, z) if hl,m,n(x, y, z) < 0;
min {hl,m,n, hl±1,m±1,n±1} otherwise.

The mesh evolution we use to eliminate global and local self-
intersections evolves each mesh by

∂M

∂t
= −f(M)∇f(M) − W42(M). (5)

Here −f(M)∇f(M), the antigradient of 1

2
f2, pushes the mesh

vertices towards the zero level set of f(x, y, z). The weight W (M)
in (5) for a mesh vertex M ∈ M is given by

W (M) =
|f(M) − g(M, S)|

max
M∈M

|f(M) − g(M, S)|
,

where S is the skeleton vertex corresponding to mesh vertex M .
Similar to (4) the bilaplacian term in (5) makes the flow more

stable while another term in the left hand-side of (5) pushes the
mesh vertices towards the envelope of the medial balls centered at
the vertices of the deformed skeleton.

Mesh fairing with (4) and (5) is demonstrated in Fig. 11 for a
large-scale deformation of an ellipsoid model.

Figure 11: Fairing global and local self-intersections. Top-left:
an ellipsoid, its skeletal mesh, and control points used to deform
the skeletal mesh. Top-right: the ellipsoid is bended via a skele-
ton-based deformation. Bottom-left: folds and protrusions are
removed by (4), however local and global self-intersections re-
main. Bottom-right: removing the self-intersections by (5).
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Figure 12: Basic mesh deformation process. (a) The original hand mesh, its skeletal mesh, and control points to be used to deform
the skeletal mesh. (b) A deformed skeletal mesh. (c) Folds and protrusions are observed in the deformed mesh. (d) The folds
and protrusions are removed by (4); however global and local self-intersections are still presented. (e) The global and local self-
intersections are eliminated by (5).

3.3 Gathering All Together
Our basic mesh deformation process is demonstrated in Fig. 12

Given a mesh, first its Voronoi-based skeletal mesh is extracted.
Next a free-form deformation is applied to the skeletal mesh. Then
a deformed mesh is reconstructed from the deformed skeletal mesh
according to (1). We employ (2), (3) with L = 3 to produce the de-
formed mesh. Finally mesh fairing is applied. Mesh evolution (4)
eliminates folds and protrusions and mesh evolution (5) removes
the self-intersections.

Figure 13: Removing self-intersections of the deformed hand
mesh from Fig. 12(d). Left: various views at a zoomed part
of Fig. 12(d). Right: corresponding views at the same parts of
Fig. 12(e). The self-intersections are gone.

4. COMBINING WITH DISPLACED SUBDI-
VISION SURFACE REPRESENTATION

The most time consuming steps of our basic method presented
in previous sections are those described in subsections 3.1 and 3.2.
For example, for the hand model consisting of 16K triangles only,
its deformation processes shown in Fig. 13 takes approximately one
and a half minutes for eliminating self-intersections, about six sec-
onds for removing folds and protrusions, and less than one second
for all the other operations (a Java3D implementation on a 1.7GHz
Pentium 4 computer was used). In order to perform the deformation
process in a matter of few seconds we combine it with a displaced
subdivision surface representation [18].

The displaced subdivision surface representation, DSS-rep, is a
compact surface representation capturing small-scale details of an
original surface as a scalar displacement field over a decimated and
then subdivided surface.

Given a dense mesh, first we obtain a DSS representation of the
mesh: a decimated mesh and a scalar displacement field. Then
we build our skeleton-based representation of the decimated mesh.
The decimated mesh has much fewer vertices than the original
dense mesh and do not contain small-scale details. This leads to
fast and robust extraction of the Voronoi-based skeleton for the
decimated mesh. Moreover DSS-rep protects fine geometry fea-
tures of the original mesh from being damaged by mesh evolutions
(4) and (5). The mesh deformation process is now organized as fol-
lows: a free-from deformation is applied to the skeleton of the deci-
mated mesh and implies a deformation of the decimated mesh. The
deformed mesh is then subdivided and, finally, a deformation of
the original dense mesh is obtained from the subdivided deformed
mesh by adding the scalar displacement field.

To demonstrate how the above combination of DSS-rep and the
skeleton-driven mesh deformation approach described in previous
sections works we used the dragon, mannequin head, cow, and hand
models. The models are remeshed (topological noise removal, dec-
imation, subdivision) in order to improve their quality. See Figures
1, 14, 15, and 16 for the results. Coloring by the mean curvature is
used for a quality evaluation of the deformed models.



Figure 14: Skeleton-based deformations enriched by DSS: the
cow model consists of 45K triangles while its skeletal mesh has
3K triangles only.

Figure 15: Another global deformation of the cow model.

In these examples, the whole mesh deformation process takes
only a few seconds without taking into account computing the DSS
representation. In our current implementation, we compute the
DSS representation without its most computationally expensive op-
timization step [18]. Besides DSS-rep has to be computed only
once.

Figure 16: Skeleton-based deformations enriched by DSS: the
hand model has 38K triangles while its skeletal mesh consists
of 2K triangles only.

5. CONCLUSION
In this paper, we have developed a new approach to free-from

skeleton-based mesh deformations. Using the skeleton as the base
of our technique allows us to generate natural-looking large-scale
mesh deformations. The main features of our approach are using
Voronoi-based skeletal mesh, applying mesh evolutions for skele-
ton fairing, and combining skeleton-based mesh deformations with
the DSS mesh representation approach. All this makes it possible
to produce global mesh deformations of satisfactory quality.

To evolve a mesh according to (4) and (5) we employ a sim-
ple explicit finite-difference approximation. Better results can be
achieved if a semi-implicit approximation similar to that proposed
in [11] is used.

It turns our that a stability in extraction of the medial axis (skele-
ton) is more important for our method than an approximation ac-
curacy. This is why we do not build our skeleton from the Voronoi
poles introduced and effectively used for mesh reconstruction pur-
poses in [2, 1]. Instead, following ideas of [12], we approximate
the skeleton by linear combinations of Voronoi vertices.



As demonstrated, our skeleton-based approach works well for
deforming objects composed of elongated parts. The approach has
limitations in processing objects of spherical-like shapes because
their skeletons are usually very complex. Another limitation of our
method consists in deforming models with sharp edges and corners
since the mesh evolutions (4) and (5) may destroy the mesh sharp
features. Finally

Acknowledgments
We would like to thank the anonymous reviewers of this paper for
their valuable and constructive comments. Models are courtesy of
the Stanford University (dragon), University of Washington (man-
nequin head), Kitware, Inc. (cow), and FarField Technology Ltd
(hand).

6. REFERENCES
[1] N. Amenta and M. Bern. Surface reconstruction by Voronoi

filtering. Discrete and Computational Geometry,
22:481–504, 1999.

[2] N. Amenta, M. Bern, and M. Kamvysselis. A new
Voronoi-based surface reconstruction algorithm. In
Proceedings of ACM SIGGRAPH 1998, pages 415–421,
1998.

[3] N. Amenta, S. Choi, and R. Kolluri. The power crust. In
Proceedings of 6th ACM Symposium on Solid Modeling and
Applications, pages 249–260, 2001.

[4] E. V. Anoshkina, A. G. Belyaev, O. G. Okunev, and T. L.
Kunii. Ridges and ravines: a singularity approach.
International Journal for Shape Modeling, 1(1):1–11, 1994.

[5] C. B. Barber, D. P. Dobkin, and H. T. Huhdanpaa. The
Quickhull algorithm for convex hulls. ACM Transactions on
Mathematical Software, 22:469–483, 1996.

[6] J. Bloomenthal. Skinning: Medial-based vertex deformation.
In Proceedings of ACM SIGGRAPH Symposium on
Computer Animation, pages 147–151, 2002.

[7] J. Bloomenthal and C. Lim. Skeletal methods of shape
manipulation. In Proceedings of Shape Modeling
International ’99, pages 44–47, 1999.

[8] H. Blum. A transformation for extracting new descriptors of
shape. In W. Wathen-Dunn, editor, Symposium on Models for
the Perception of Speech and Visual Form, pages 362–380.
MIT Press, 1967.

[9] H. Blum. Biological shape and visual science. J. Theor.
Biology, 38:205–287, 1973.

[10] J.-D. Boissonnat, A. Cérézo, O. Devillers, J. Duquesne, and
M. Yvinec. An algorithm for constructing the convex hull of
a set of spheres in dimension d. Comp. Geom. Theory Appl.,
6:123–130, 1996.

[11] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Implicit
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Saarbrüken, Germany, June 2002.

[13] P. Giblin and B. B. Kimia. A formal classification of 3D
medial axis points and their local geometry. In Computer
Vision and Pattern Recognition (CVPR’00), Vol. I, pages
566–575, 2000.

[14] I. Guskov, W. Sweldens, and P. Schröder. Multiresolution
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