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Abstract

A new geometry-based finite difference method for a fast

and reliable detection of perceptually salient curvature ex-

trema on surfaces approximated by dense triangle meshes

is proposed. The foundations of the method are two simple

curvature and curvature derivative formulas overlooked in

modern differential geometry textbooks and seemingly new

observation about inversion-invariant local surface-based

differential forms.

Problem setting and solution

This paper is inspired by two simple but beautiful formu-

las of classical differential geometry and a seemingly new

observation about inversion-invariant local surface-based

differential forms. The formulas and observation are the

key ingredients of our approach to fast and reliable detec-

tion of the so-called crest lines [30], salient subsets of the

extrema of the surface principal curvatures along their cor-

responding curvature lines.

Related work. The full set of such extrema, frequently

called ridges [25], corresponds to the edges of regression of

the envelopes of the surface normals and was first studied by

A.Gullstrand in connection with his work in ophthalmology

(1911 Nobel Prize in Physiology and Medicine). Since then

the ridges and their subsets were frequently used for shape

interrogation purposes (see, for example, [14, Sect. 7.4],

[11, Chap. 6], [26, Chap. 11], and references therein). The

ridges possess many interesting properties. In particular,

they can be defined as the loci of surface points where the

osculating spheres have high-order contacts with the sur-

face and, therefore, the ridges are invariant under inversion

of the surface w.r.t. any sphere [25].

The principal difficulty in detecting the crest lines and

similar features on discrete surfaces consists of achieving an

accurate estimation of surface curvatures and their deriva-

tives. The main approaches here are local polynomial fit-

ting [2, 3, 16], the use of discrete differential operators [12],

and various combinations of continuous and discrete tech-

niques [23, 37]. While estimating surface curvatures and

their derivatives with geometrically inspired discrete differ-

ential operators [12, 27] is much more elegant than using

fitting methods, the former usually requires noise elimina-

tion and the latter seems more robust. On the other hand,

as pointed out in [27], fitting methods incorporate a certain

amount of smoothing in the curvature and curvature deriva-

tive estimation processes and that amount is very difficult

to control. Another limitation of fitting schemes consists of

their relatively low speed to compare with discrete differen-

tial operators. Further, since predefined local primitives are

used for fitting, one cannot expect a truly faithful estimation

of surface differential properties.

Our approach to estimating the surface’s principal curva-

tures and their derivatives is pure geometrical.

Two forgotten formulas. The first formula [33, §119]1

states that for a smooth surface r oriented by its unit normal

n

∆Sn = −
(

k2
max + k2

min

)

n −∇S (kmax + kmin) , (1)

where ∆S is the Laplace-Beltrami operator (the surface

Laplacian), ∇S is the surface tangential gradient operator,

and kmax and kmin are the maximum and minimum princi-

pal curvatures, kmax ≥ kmin.

The second formula relates the derivatives of the prin-

cipal curvatures kmax and kmin along their corresponding

principal directions tmax and tmin, respectively, and area

elements of the two focal surfaces

fmax = r + n/kmax, fmin = r + n/kmin

associated with surface r [33, §75] (examples of focal sur-
faces are shown in Figure 1). Namely, let us set

emax = ∂kmax/∂tmax, emin = ∂kmin/∂tmin, (2)

1Weatherburn considered this formula as a key ingredient of his vector

analysis approach [34].



then

emaxtmax =
k3
maxDmax

kmax − kmin

nmax,

emintmin =
k3
minDmin

kmin − kmax

nmin,

(3)

whereDmax andDmin are the determinants of the 2×2ma-
trices composed of the coefficients of the first fundamental

forms of focal surfaces fmax and fmin and nmax and nmin

are the corresponding focal surface normals, respectively.

ThusDmaxnmax andDminnmin form the oriented area ele-

ments of the focal surfaces fmax and fmin, respectively.

Figure 1: The focal surfaces of an ellipsoid.

While (3) looks a bit complex, its proof is very simple. In

a small vicinity of non-umbilical point, let us use the lines of

curvature parameterized by their arc lengths. Then the sur-

face is locally represented in parametric form r = r(u, v)
for which ru = tmax, rv = tmin, nu = −kmaxtmax,

nv = −kmintmin. Consider a generalized focal surface

f = r(u, v) + R(u, v)n(u, v). (4)

Substitutions R = Rmax ≡ 1/kmax and R = Rmin ≡
1/kmin give us the standard focal surfaces fmax and fmin,

respectively. The oriented area element fu × fv of (4) is

−Ru (1 − R/Rmin) tmax − Rv (1 − R/Rmax) tmin

+(1 − R/Rmax) (1 − R/Rmin)n

and (3) immediately follows.

It is worth to observe that (3) implies simple relations be-

tween the surface principal directions tmax, tmin and nor-

mals nmax, nmin of the focal surfaces fmax, fmin. The re-

lations were recently used as key ingredients of a novel ap-

proach to robust estimating the principal directions and cur-

vatures of triangulated surfaces [38].

A proof of (1) is more lengthly and we omit it here.

In this paper, we use (1) and (3) for estimating the cur-

vature tensor, curvature extremalities (2) and tracing the so-

called crest lines on dense triangle meshes approximating

smooth surfaces.

Estimating surface curvature tensor. Accurate and ro-

bust estimating differential properties of smooth surfaces

approximated by their discrete counterparts, polygonal

meshes / soups and point clouds, remains to be one of the

most basic problems in digital geometry processing.

In his famous 1827 work Gauss derived a set of equa-

tions which relates the angles of a geodesic triangle on a

curved surface to the angles of a planar triangle with the

same edge lengths [10, §28]. These equations are the ba-
sis of the so-called angle-deficit formula, the most popular

discrete approximation of the Gaussian curvature. Unfortu-

nately a pointwise convergence for the angle-deficit approx-

imation and its relatives can be demonstrated for some very

restrictive cases [1, 19, 35, 36].

The most popular discrete mean curvature vector approx-

imation

∆Sr = (kmax + kmin)n (5)

is based on the so-called cotan formula for the Laplace-

Beltrami operator for which convergence results were re-

cently established [13].
So it seems attractive to use the cotan approximation of

Laplace-Beltrami operator for estimating the Gaussian cur-
vature as well. Indeed, (5) and (1) imply

∆Sr · n = kmax + kmin, ∆Sn · n = −

`

k
2

max + k
2

min

´

(6)

and the principal curvatures (and, therefore, the Gaussian

curvature) can be now determined from (6).

Once the principal curvatures are estimated, discrete

counterparts of the focal surfaces can be built and their nor-

mals and area elements can be easily computed. Now (3)

provides us with estimates of the principal directions tmax,

tmin and curvature derivatives emax, emin.

Detecting crest lines. The convex and concave crest lines

are defined by the conditions

emax = 0,
∂emax

∂tmax

< 0, kmax > |kmin|, (convex),

emin = 0,
∂emin

∂tmin

> 0, kmin < −|kmax|, (concave),

where the curvature extremalities emax and emin are defined

by (2).

In our approach, we use (3) to estimate extremalities

emax and emin and then the crest lines are traced accord-

ing to a simple zero-crossing detection procedure proposed

in [23] and enhanced in [37].

Formulas (3) explain the “focusing” effect of each focal

surface near its edges of regression: the area element of a

focal surface degenerates to zero at the edges of regression.

This observation was used in [17, 32] for detecting creases

on meshes. In our study, we employ the full power of (3).

New invariance properties of curvature extrema. It is

not difficult to show that the ridges, the full set of the ex-

trema of the principal curvatures along their correspond-
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ing curvature directions, are Möbius-invariant (i.e., scale-

independent and inversion-invariant). Indeed, they are ob-

viously scale-invariant and their invariance w.r.t. the inver-

sions can be easily verified by direct computations.

Consider surface r̃ obtained from r by inversion w.r.t.

the sphere of radius c centered at the origin of coordinates:
r̃ = c2r/r2, r2 = r · r. Then the length elements of r̃ and r

are related by ds̃ = c2ds/r2. The principal curvatures of r̃

are given by

k̃max = −
r2

c2
kmax −

2

c2
r · n,

k̃min = −
r2

c2
kmin −

2

c2
r · n.

See [33, §§82-83] for a derivation of these equations. The
curvature lines of r are mapped onto the curvature lines of r̃.

Now differentiating k̃max and k̃min along their correspond-

ing curvature lines and using the Rodrigues’ curvature for-

mula gives a new and unexpected result

c2

r2
ẽmax =

∂k̃max

∂tmax

= −
r2

c2
emax, (7)

c2

r2
ẽmin =

∂k̃min

∂tmin

= −
r2

c2
emin (8)

and the inversion-invariance of the ridges follows.

Using (7) and (8) we arrive at

ẽmaxds̃2 = −emaxds2, ẽminds̃2 = −eminds2 (9)

and can easily construct a number of Möbius-invariant ex-

pressions:
√

|emax| + |emin| ds, (10)

√

e2
max + e2

min
dA,

√

|emaxemin| dA,

(kmax − kmin)
2
dA, |emax| dA, |emin| dA,

e2
max dA

(kmax − kmin)
2
,

e2
min dA

(kmax − kmin)
2
,

emaxemin dA

(kmax − kmin)
2
, (11)

where ds and dA are curve-on-surface arc-length and sur-
face area elements, respectively.

Some of these Möbius-invariant surface-based differen-

tial forms were studied before. For example, in [9] it was

shown that (11) is also invariant w.r.t the normal shifts.

Some others seem to be new although they can be obtained

from a complete Möbius invariant system derived in [31].

In our study, we use (10) for selecting perceptually salient

subsets of the crest lines.

Filtering crest lines. Once the full set of crest lines is ex-

tracted, we need a filtering procedure in order to remove

spurious lines and select the most perceptually-salient crest

line structures.

We measure the strength of a detected crest line by the

Möbius-invariant quantity

∫

√

|emax| + |emin| ds, (12)

where the integrals are taken over the crest line. Our moti-

vation behind using (12) is as follows. The crest lines are

a subset of the ridges which correspond to the edges of re-

gression of the focal surfaces. The quantity |emax| + |emin|
computed at a given surface point indicates how far/close a

small surface neighborhood around the point is from being

a part of a Dupin cyclide. The Dupin cyclides are char-

acterized by the condition that both its focal surfaces de-

generate into space curves [8, §132]. Therefore the Dupin
cyclides consist of ridge points only and have no creases.

Thus (12) can be effectively used to filter out spurious crest

lines arising at mesh parts corresponding to planar, spher-

ical, conical, cylindrical, and other Dupin cyclide regions

on a smooth surface. A similar, but not inversion-invariant,

thresholding scheme was suggested in [37].

Fig. 2 shows the crest lines detected on various meshes.

Our approach allows for an accurate detection both sharp

surface edges and delicate surface wrinkles.

Further numerical issues. Given a triangle meshM ap-

proximating a smooth surface r, our first task is to get an

accurate and robust estimation of the surface normal. Our

numerical experiments suggest that a simple method of [18]

is a very good choice.

Once the discrete normals at the mesh vertices are com-

puted, the discrete principal curvatures are obtained from

(6) where the standard cotan formula [24, 20] is used to ap-

proximate the Laplace-Beltrami operator.

Now we are ready to build meshes Fmax, Fmin, dis-

crete counterparts of the focal surfaces fmax, fmin, and es-

timate the principal directions tmax, tmin and extremalities

emax, emin. Since curvature extrema are very sensitive to

even small shape variations, it is a good idea to incorporate

a simple parameter-free smoothing procedure here. As we

will see later, it is not really necessary but leads to more

visually pleasant patterns of the crest lines. Namely, mo-

tivated by [29], we consider the dual mesh consisting of

the triangle centroids ofM and construct an auxiliary mesh

whose vertices are the centroids of the polygons composing

the dual mesh. The auxiliary mesh inherits the connectiv-

ity ofM. Then the discrete focal meshes Fmax and Fmin

for the auxiliary mesh are built and their normals nmax and

nmin are computed according to [18].

In practice, if |kmax| > |kmin| we set tmax = nmax and
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Figure 2: Convex (blue) and concave (red) crest lines detected on

polygonal models with many geometric features of various kinds.

Center: no thresholding is applied. Right: the crest lines are fil-

tered by using percentiles of (12). One can observe that spuri-

ous crest lines initially detected on spherical parts of the gearbox

model (third from the top) are efficiently removed.

tmin = n × nmax. Otherwise, tmin = nmin and tmax =
nmin × n.

The oriented area element at a vertex v of Fmax (Fmin)

is obtained by averaging the oriented areas of adjacent tri-

angles. Namely, only those triangles (v,vi,vi+1) from the
1-ring neighborhood of v contribute to the oriented area el-

ement at v, for which kmax (kmin) has the same sign at

the corresponding vertices of M. We use this curvature
sign restriction condition in order to avoid troubles with the

parabolic lines on r where the corresponding focal surfaces

go to infinity. Although according to their mathematical

definition, the crest lines stay aside of their corresponding

parabolic lines, the above condition contributes to numeri-

cal stability of our approach.

Discussion

Our method is fast. According to our experiments, it

processes approximately 1-1.2M triangles per second on a

standard PC.2 In particular, the method is much faster than

the method of [23] where hierarchical CS-RBF fitting was

employed, 8-11 times faster than the scheme of [37] were

local fitting with cubic polynomials was used, and 2-3 times

faster than crest line tracing based on Rusinkiewicz’s ap-

proach to estimating curvature derivatives [27] (in our nu-

merical experiments, we use program codes available from

the authors of these papers).

Fig. 4 provides the reader with a visual quality compari-

son of our method and those developed in [23, 37] and based

on [27]. In Fig. 3, we use an analytically defined surface to

compare the results of our numerical approach with the ex-

act crest lines.

In addition to its high speed, the method achieves an ac-

curate detection of the surface creases on noiseless meshes,

as seen in Figures 2, 3, 4, and 5. Further, as demonstrated

in Fig. 5, our numerical approach is robust w.r.t. the mesh

quality: the Vase-Lion model shown in the figure has a

quite irregular mesh structure. In Fig. 5, we present also

an example of extracting the crest lines in the case when no

smoothing is applied to the focal meshes. While it delivers

a truly faithful detection of these delicate surface features, a

small amount of smoothing seems necessary to pleasure the

reader’s eyes.

Spectacular results of [12] were achieved by combining

local finite differences with several diffusion steps each of

which requires a careful selection of user-specified param-

eters. In our approach, we restrain from using smooth-

ing procedures (except our simple parameter-free smooth-

ing of M) since smoothing modifies the geometry of the
crest lines. In addition, the discrete shape operator [4] em-

ployed in [12] convergences under quite strong/restrictive

conditions. In contrast, the discrete Laplace-Beltrami oper-

ator we employ convergences to its continuous counterpart

under quite mild conditions [13].

Besides a high speed, the main advantage of our ap-

proach to estimating curvatures derivatives over those de-

veloped in [12] and [27] consists of using truly geomet-

ric differentiations instead of geometrically-motivated finite

differences. The algorithm of [27] employs least square

fitting procedures for estimating the curvature tensor and

derivatives while our approach employs geometric finite

differences only. Besides the obvious aesthetics, exploit-

ing intrinsic geometric nature of the problem should yield

more faithful results.

We expect that the speed and accuracy of our method

can greatly benefit from availability of accurately measured

surface normals [22].

Our approach can be naturally extended to dealing with

point clouds and triangle soups. The main change required

2Our numerical experiments related to this project were performed on

a Core2Duo E6600 (2.4 GHz) PC with 2GB RAM equipped with gcc 4.1.1

C++ compiler. No parallelization was used.
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Figure 3: Comparison with the exact crest lines. Left: the input

meshes generated by sampling on analytical surfaces. Center: the

exact crest lines. Right: our results.

is to use an appropriate graph Laplacian instead of a mesh

Laplacian. Graph Laplacians are now widely used in ge-

ometric data analysis and machine learning [6] and their

asymptotic properties are well understood [5, 28] (see also

references therein).

In this study, we have not utilized the full power of (1).

Once tmax, tmin and emax, emin are found, (1) allows us

to compute the remaining first-order curvature derivatives

∂kmax/∂tmin and ∂kmin/∂tmax.

One limitation of our approach to computing curvature

derivatives consists of certain difficulties in estimating the

extremality coefficients emax and emin in the mesh vertices

close to the parabolic lines of surface r. Indeed, each fo-

cal surface goes to infinity at the points of its corresponding

parabolic line on r. In practice, it affects very slightly our

method for detecting the crest lines since they do not cross

the parabolic lines. Nevertheless, if an estimation of emax

and emin is required at a parabolic point, we can apply an

inversion and then use (7) and (8) for estimating the corre-

sponding curvature derivatives.

One possible application of our approach consists of

using ridge-like structures for a fast simulation of artis-

tic line drawings from detail 3D meshes. Simulating pen-

and-ink line drawings remains to be an intensive research

area where existing [7, 15, 21] and forthcoming techniques

would greatly benefit from fast and faithful estimating sur-

face curvature derivatives.

To conclude, this work contributes to a computer-aided

renaissance of the local differential geometry of curves and

surfaces, a field with a surprising richness of ideas and re-

sults.
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Figure 4: A comparison of crest line detection methods. The crest lines are traced on Camel (78K triangles), Cow (93K triangles), and

Feline (399K triangles) models, no filtering is applied. (a): Hierarchical CS-RBF fitting [23] (7th octree level is used) is robust but slow

(55s, 68s, and 313s for these three models, respectively) and not sufficiently accurate (see the eye areas of the Camel and Cow). (b,c):

Local polynomial fitting [37] is more accurate and much faster; (b): 3-ring vertex neighborhood is used for polynomial fitting (2.24s,

2.98s, and 13.7s); (c): 1-ring vertex neighborhood is used for polynomial fitting (0.66s, 0.85s, and 3.77s). (d): Crest line detection based

on finite difference approximations of [27] is much faster (0.15s, 0.17s, and 0.78s). (e): The geometric algorithm developed in this paper

is sufficiently accurate and very fast (0.08s, 0.08s, and 0.35s).

(a) (b) (c) (d) (e)

Figure 5: Detecting the crest lines on an irregular mesh model. No smoothing is applied to the focal meshes for (c). Simple parameter-free

smoothing of the focal meshes is used to generate (d). Finally (e) is obtained from (d) by filtering the detected crest lines by (12).
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