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Abstract
In this paper, we propose a set of free-form shape defor-

mation techniques. The basic approach can be described
as follows. Given a surface represented by a mesh and a
control point, for every mesh vertex let us consider the dif-
ference between the control point and the vertex. The vertex
is shifted by a displacement equal to the difference times
a scale factor where the scale factor is given by a func-
tion depending nonlinearly on the difference. The function
is bump-shaped and depends on a number of parameters.
Varying the parameters leads to a rich palette of shape de-
formations. The proposed approach includes also shape de-
formations with multiple (real, auxiliary, and virtual) con-
trol points and constrained, directional, and anisotropic de-
formations. It allows a user to edit a given shape interac-
tively and intuitively. No mesh connectivity information is
used and, therefore, the proposed techniques can be applied
directly to a shape given as a cloud of points.

Keywords: constrained, directional, and anisotropic free-
form shape deformations.

1 Introduction
Since a pioneering work [8], developing fast, efficient,

and intuitive methods for free-form shape deformations re-
mains to be an area of active research (see, for example,
recent works [9, 3, 6] and references therein). In this pa-
per, we introduce a set of free-form shape deformation tech-
niques.

One of the interesting features of our approach is that it
does not use any mesh connectivity information and, there-
fore, can be used to create free-form deformations of shapes
given as point datasets. Due to recent advances in 3D scan-
ning technologies, the point-based shape representation be-
comes one of the 3D graphics mainstreams and calls for
developing tools for processing shapes given as clouds of
points (see, for example, [5]).

Although our basic techniques (Section 2) can be con-
sidered as a modification of well-known free-form shape
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deformation methods [10, 1, 9, 6], our approach seems to
be simpler and more intuitive. The contribution of the pa-
per includes developing new constrained, directional, and
anisotropic free-form shape deformations achieved using
real, virtual, and auxiliary control points (Section 3). Al-
though, as it was noted above, our method can be applied
directly to shapes given as point datasets, for visualization
purposes we work with triangle meshes.

2 Basic Shape Deformations
The ideas behind the most of techniques described in

this section are rather well-known and can be found in
[10, 1, 9, 6], for example. The only idea with a virtual con-
trol point seems to be completely new. However the mate-
rial of the section serves as a basis for more complex shape
deformations techniques developed in Section 3.

Basic idea. Given a mesh and a control point C, let us
shift a mesh vertex O into its new position P defined by

P = O + D(C,O) (1)

with the displacement vector D given by

D(C,O) =
γ

σ
W (C,O)(O − C), (2)

where W (C,O) = exp(−
|C − O|α

2ε2
), (3)

σ = W (C,Omin), (4)

and Omin is the original vertex closest to the control point
C. Here γ, α, and ε are parameters. Of course, other bump-
shaped functions can be used instead of (3) for example the
local support Gaussian-like function which was used in [4].

Figure 1. Deformation of a plane according to (1), (2), (3),
(4) gives round-repelling when γ = 1 (left) and sharp-
attracting when γ = −1 (right).
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The sign of the parameter γ in (2) defines whether the de-
formation attracting or repelling as demonstrated in Fig. 1.
Note that γ = −1 and γ = 1 lead to different shape defor-
mations: round-repelling when γ = 1 and sharp-attracting
when γ = −1.

Virtual control point. In order to obtain a round-
attracting and sharp-repelling deformations a concept of a
virtual control point is introduced. The virtual control point
V is obtained from C by the reflection with respect to
Omin, the mesh vertex closest to C. Then the following
displacement filed is used instead of (2)

D(C,O) =
γ

σ
W (C,O)(O − V). (5)

Fig. 2 demonstrates round-attracting and sharp-repelling de-
formations created by using the virtual control point tech-
nique.

Figure 2. A virtual control point allows us to achieve a
round-attracting (left) and sharp-repelling (right) effects.

Varying parameters. Varying parameters ε, α, and γ in
(2), (3), (5) provides a user with a rich palette of interest-
ing shape deformations: changing influence kernel size γ,
region ε, and sharpness α, interactively.

Multiple control points A straightforward extension of
the techniques described above to the case of multiple con-
trol points is simple. For example, instead of (1) the follow-
ing updating rule can be used

P = O +
∑

D(Ck,O), (6)

where the sum is taken over all the control points Ck. The
parameters (αk, εk and γk) can be defined separately for
each control point Ck. The deformations shown in the mid-
dle and right images of Fig. 8 were obtained using (6).

However if two or more control points are close to each
other the following procedure blending the effects of the
control points is preferable:

P = O +

∑

D(Ck,O)|D(Ck,O)|β
∑

|D(Ck,O)|β
, (7)

A similar blending procedure was used in [9]. Here β is a
user-defined parameter which adjusts the blending magni-
tude.

3 Advanced Deformation Techniques
Constrained deformations. The technique introduced in
the previous section may produce undesirable deformations
of a surface if the control point is close to two different
parts of the surface, as demonstrated in the left image of
Fig. 3. One possible remedy for the problem consists of us-
ing W (Omin,O) instead of W (C,O) in (2) and set σ = 1
instead of (4). Here Omin is the mesh vertex closest to the
control point C. This shifting the center the weight func-
tion W from C to Omin eliminates unintended deforma-
tions shown in the right image of Fig. 3. However the posi-
tion of Omin may bifurcate when the position of the control
point changes slightly.

Figure 3. Left: unintended deformations of a surface may
occur if control point C is close to two different parts of the
surface. Right: round-repelling with W (Omin,O) instead
of W (C,O) in (2).

In spite of the problem with bifurcations, deformations
with W (Omin,O) instead of W (C,O) in (2) enrich the
palette of free-form shape deformations, see Fig. 4. In gen-
eral, the deformations with W (C,O) are more sensitive to
shape features than those with W (Omin,O).

(a) Shape deformations with W (C,O).

(b) Shape deformations with W (Omin,O).

Figure 4. W (C,O) versus W (Omin,O).
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Directional deformations. We can easily avoid the prob-
lem with bifurcations if instead of the mesh vertex Omin

closest to the control point C a reference point R on the
mesh is chosen. The virtual control point V is defined as
the point symmetric to C with respect to R:

V = 2R − C.

We use W (R,O) instead of W (C,O) in (2) for the direc-
tional deformations. Fig. 5 demonstrates directional defor-
mations of a plane.

Figure 5. Directional deformations.

Anisotropic deformations. Given a positive definite ma-
trix M , an anisotropic squared norm of a vector x is given
by xt ·M · x. Using in (3) the anisotropic distance squared
(C − O)t · M · (C − O) between the control point C and
a mesh vertex O instead of the standard Euclidean squared
distance (C−O)t · (C−O) allows us to create a new class
of free-form deformations.

In order to implement anisotropic deformations with a
user-controlled matrix M an additional control point Q is
added such that it always belongs to the plane orthogonal to
COmin. Here Omin is the mesh vertex closest to C.

Three points C, Omin, and Q are used to define a basis
{ e1, e2, e3} as follows:

e1 =
Q − C

|Q − C|
, e3 =

C − Omin

|C − Omin|
, e2 = e1 × e3.

See the left image of Fig. 6.
Let B = [ e1, e2, e3] be the coordinate transform matrix

associated with the basis e1, e2, and e3 and

A =





g(|Q − C|) 0 0
0 1 0
0 0 1



 ,

where g(x) is a smooth function defined for x > 0. The
matrix M is defined by M = BtAB. In our current imple-
mentation, we use g(x) = 1

10x
.

The anisotropic deformations can be easily combined
with the directional shape deformations if a user-specified
mesh vertex R is used instead of Omin. The closest point
Omin remains to be used for computing the basis vector e3.

Fig. 7 demonstrates how a directional anisotropic defor-
mation modifies the head of a lion-dog statue1.

1The mythical Buddhist ”lion-dog” combines the power of the lion and
the loyalty of the dog.

O

C

min

e

e
e

1
2

3
Q

Original Mesh

Q: Anisotropic Reference Point

Figure 6. Anisotropic deformations are defined via an addi-
tional control point Q.

Figure 7. A directional anisotropic deformation is used to
open the “lion-dog” mouth.

The anisotropic deformations considered in this section
are not capable to create shape deformations with sharp
edges. Sharp edges can be produced if several control points
are used, as seen in Fig. 8.

Figure 8. Left: anisotropic sharp-attracting deformation.
Middle and right: anisotropic deformations can be created
via superposition of several isotropic deformations.

4 Conclusion
We hope that the set of tools presented in the paper will

provide a modeler with a rich palette (fast, efficient, and
intuitive) of free-from shape deformations, because the lin-
ear computational cost is achieved for each control point to
describe various interesting deformation effects. The tech-
niques described in this paper are implemented in a Java 3D
toolkit developed by the first author [11]. Fig. 10 shows the
main GUI window of the toolkit. Our experiments with the
toolkit assure us that the shape deformations described in
the paper can be used for shape morphing, see Fig. 9, chang-
ing facial expressions, see Fig. 11, and many other shape
editing tasks.

Given a multiresolution mesh [7], the shape deforma-
tions we proposed can be applied to various levels of de-
tail. The deformations can be also applied to control lattices
[8] and combined with the wires technique [9]. Implement-
ing a dynamic mesh connectivity [2] and shape deforma-
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Figure 9. Morphing a squirrel (left) into a piglet (right).

tions acting via modifying the field of shape normals and/or
shape curvatures constitute other promising areas for future
research.
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Figure 10. GUI of Yoshizawa’s toolkit for free-form shape
deformations. A deformed Moai statue model is shown.

Figure 11. Deformations of complex objects.
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