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Abstract

In this paper, we study M•obius-invariant curvature-based surface energies and char-
acteristic surface curves. We demonstrate how M•obius-invariant curvature-based surface
energies can be used to achieve a better detection of salientsurface creases.

1. Introduction
Invariance is a foundational concept in physical theories and mathematical construc-
tions. Invariance serves as a central pillar for pattern recognition and is of fundamental
importance for computer vision and geometric modeling applications.

In this paper, we deal with curvature-based surface energies, surface curves, and pa-
rameters which are invariant under M•obius transformations. The Lie group of M•obius
transformations is generated by inversions in spheres and,in addition to the sphere inver-
sions, includes the translations, rotations, and similarity transformations (homotheties).
High importance of M•obius transformations and invariants is justi�ed by Liouvilles the-
orem on conformal mappings which states that any smooth conformal mapping on a
domain of Rd, d � 3 is a M•obius transformation (see, for example, (Blair 2000)). Fig-
ure 1 demonstrates an inversion of a complex mesh model. Curvature-based energies are
widely used in mathematical, physical, engineering, and biological studies. Various in-
variance properties of curvature-based energies make themuseful computer vision and
geometric modeling applications.

In this study, we consider M•obius invariant curvature-based surface energies and use
them for a robust detection of salient surface creases. All numerical experiments pre-
sented in this paper are performed on surfaces approximatedby dense triangle meshes
where their di�erential quantities are approximated by usi ng the approach developed in
(Yoshizawa et al. 2008).

2. M•obius cross energy of a link
Consider a pair of curves
 1 and 
 2 in Euclidean three-spaceE 3 as illustrated in Fig. 2 (a).
Let the curves be parameterized by their arc-lengthss1 2 I 1 and s2 2 I 2, respectively.
The M•obius cross energyof the pair is de�ned by

E(
 1; 
 2) =
ZZ

I 1 � I 2

ds1ds2

j
 1 � 
 2j2
: (2.1)

It is easy to show that this energy is M•obius invariant (Freedman et al. 1994; He 2002).
Indeed let � be an inversion w.r.t a sphere of radiusc centered at the origin of coordinates
O. Let ~x and ~y be the inversion images ofx and y , respectively, as seen in Fig. 2 (b).
Then jx j=j ~y j = jy j=j ~x j and, therefore, the trianglesOx y and O ~y ~x are similar. Thus
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(a) (b) (c) (d) (e)

Figure 1. Inversion examples. (a,b): Input mesh. (c,d,e): Inversion o f (a,b).

(a) (b)

Figure 2. Links, knots, and inversions. (a): a link and a knot. (b): an inve rsion w.r.t. sphere S.

jx j
jx � y j

=
j ~y j

j ~x � ~y j
;

jy j
jx � y j

=
j ~x j

j ~x � ~y j
; and

jx jjy j
jx � y j2

=
j ~x jj ~y j

j ~x � ~y j2
:

It remains to note that

jd ~x j =
c2

jx j2
jdx j =

jx jj ~x j
jx j2

jdx j =
j ~x j
jx j

jdx j; jd ~y j =
j ~y j
jy j

jdy j;

and therefore,
jdx jjdy j
jx � y j2

=
jd ~x jjd ~y j
j ~x � ~y j2

: (2.2)

M•obius cross energyE(
 1; 
 2) de�ned by (2.1) is �nite for a link but becomes in�nite
for a knot. So various generalizations ofE(
; 
 ) are considered for knot analysis and
visualization purposes (O'Hara 2003).

3. M•obius energies of a surface
Consider a smooth surfaceM and a point x on it. Let s1 and s2 be the curvature line
arc-lengths corresponding to the curvature radii R1 = 1=k1 and R2 = 1=k2, where k1

and k2 are the principal curvatures (k1 � k2) of M at x . Denote by f 1 the arc-length of
the curve on the R1-focal surface corresponding tok1-curvature line on M and by f 2 the
arc-length of the curve on theR2-focal surface corresponding tok2-curvature line on M ,
see Figs 3 and 4.

According to (2.2) measure

df 1df 2

(R1 � R2)2 (3.1)

is M•obius invariant. It is not di�cult to show that (Weather burn 1927, Art. 75)
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Figure 3. Surface M and its two corresponding focal surfaces.

(a) (b) (c) (d) (e)

Figure 4. Focal surface examples. (a): Input ellipsoid mesh. (b): R1-focal surface of (a). (c):
R2-focal surface of (a). (d,e): Both focal surfaces of (a).

df 1 = j@R1=@s1jds1 and df 2 = j@R2=@s2jds2: (3.2)

Denote by e1 = @k1=@s1 and e2 = @k2=@s2 the derivatives of the principal curvatures
k1 and k2 along their corresponding curvature lines, respectively.Now (3.1), (3.2), and
relation ds1ds2 = dA imply that

je1jje2jdA
(k1 � k2)2 (3.3)

is M•obius invariant. Further, since (3.1) is invariant w.r .t. normal shifts, the same is true
for (3.3).

Now we provide the reader with a more traditional derivation of the M•obius invariance
of (3.1) and (3.3). Consider a smooth oriented surfaceM in E 3. Let � be an inversion
w.r.t a sphere of radiusc > 0 centered at the origin of coordinates. Denote byx and ~x
the position vectors ofM and the inverse surface ~M = � (M ), respectively. Then we have

~x =
c2

r 2 x ; d ~x =
c2

r 2 dx � 2
c2

r 3 drx ; d ~x 2 =
c4

r 4 dx 2; where r = jx j:

It is not di�cult to show that

~k1 = �
r 2

c2 k2 � 2
(x � n)

c2 and ~k2 = �
r 2

c2 k1 � 2
(x � n)

c2 (3.4)

where n is the unit normal vector of x , ~k1 and ~k2 are the principal curvatures (~k1 � ~k2)
of ~M at ~x , see (Weatherburn 1927, Art. 82-83) or Appendix A for derivations of (3.4).
Thus (k1 � k2)2dA is M•obius invariant.
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(a) (b)

(c) (d)

(e) (f) (g) (h)

Figure 5. Duality of principal curvatures and their corresponding pr incipal directions for the
input mesh M (a,b,e,f) and its inversion ~M (c,d,g,h). (a): t 1 . (b): t 2 . (c): ~t 1 . (d): ~t 2 . (e): k1 . (f):
k2 . (g): ~k1 . (h): ~k2 . Here the input and its inversion ( c = 0 :2) meshes are shown in (a,b) and
(c,d,e) of Fig. 1, respectively.

Di�erentiating the principal curvatures ~k1 and ~k2 of ~M along their corresponding
curvature lines yields (see Appendix B for detailed derivations)

c2

r 2 ~e1 = �
r 2

c2 e2;
c2

r 2 ~e2 = �
r 2

c2 e1; d~s1 =
c2

r 2 ds2; and d~s2 =
c2

r 2 ds1 (3.5)

where ~s1 and ~s2 are the arc-lengths of curvature lines of ~M corresponding to~k1 and ~k2,
respectively. Note that the curvature lines ofM are mapped onto the curvature lines of ~M
such that ~t 1 = t 2 and ~t 2 = t 1, where~t 1 and ~t 2 are the principal directions corresponding
to the principal curvatures ~k1 and ~k2, respectively, see Figs 5 and 6.

Therefore the measure (3.3) is M•obius invariant. Further, simple algebraic manipula-
tions (addition, multiplication, division) with the above formulas yield M•obius invariance
of

(e2
1 + e2

2)dA
(k1 � k2)2 ;

(e1 + e2)2dA
(k1 � k2)2 ;

(e1 � e2)2dA
(k1 � k2)2 ;

e1e2dA
(k1 � k2)2 ; (3.6)

(k1 � k2)2dA; and
q

e2
1 + e2

2dA: (3.7)

In particular, integration over M of (3.7) gives
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(a) (b)

Figure 6. Duality of principal directions. (a): Principal direction s t 1 and t 2 of the input ellipsoid
mesh shown in Fig. 4 (a). (b): Principal directions ~t 1 and ~t 2 of inversion of (a) where c = 1 :0.

Figure 7. Normal o�set examples.

Z

M
(k1 � k2)2dA and

Z

M

q
e2

1 + e2
2dA

which are the celebrated Willmore energy and a surface energy we call the will-even-
more energy: a novel M•obius invariant extension for minimum variation surfaces (MVS)
of (Moreton and S�equin 1992; Joshi and S�equin 2007), respectively. M•obius invariance of
(k1 � k2)2dA is also mentioned in (Blaschke 1929,x74).

3.1. Normal o�set invariance

Consider a normal o�set surfaceM̂ of M such that x̂ = x + � n of M where n is the
unit normal of x and � 2 R is a constant, see Fig. 7 for some examples. Let̂k1 and k̂2

be the principal curvatures of x̂ where k̂1 � k̂2. According to (Hosaka 1992), we have

dÂ = (1 � �k 1)(1 � �k 2)dA; dŝ1 = (1 � �k 1)ds1; dŝ2 = (1 � �k 2)ds2;

k̂1 =
k1

1 � �k 1
; and k̂2 =

k2

1 � �k 2

where ŝ1 and ŝ2 are the arc-lengths of curvature lines ofM̂ corresponding to k̂1 and k̂2,
respectively.

By using the principal coordinate system, we have

ê1 =
@

@~s1

k1

1 � �k 1
=

@s1
@~s1

@
@s1

k1

1 � �k 1
=

e1

(1 � �k 1)3 and ê2 =
e2

(1 � �k 2)3

where ê1 and ê2 are the derivatives of the principal curvatures k̂1 and k̂2 along their
corresponding curvature lines, respectively.

Therefore the measure (3.3) and last quantity in (3.6) are o�set invariant.
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3.2. Focal surfaces

Consider the focal surfaces ofM such that

f1 = x +
1
k1

n and f2 = x +
1
k2

n:

Thus

@f1

@s1
=

@x
@s1

�
1
k2

1

@k1
@s1

n +
1
k1

ns1 and
@f2

@s2
=

@x
@s2

�
1
k2

2

@k2
@s2

n +
1
k2

ns2 :

By using the principal coordinate system, we have

@f1

@s1
= �

e1

k2
1

n;
@f2

@s2
= �

e2

k2
2

n; and df 1df 2 =
je1jje2j
k2

1k2
2

ds1ds2

where df 1 = jdf1j and df 2 = jdf2j. Therefore,

df 1df 2

(R1 � R2)2 =
je1jje2jdA
(k1 � k2)2 :

Since the right hand side of the above equation is equivalentto (3.3) which is M•obius
and normal o�set invariant, the measure (3.1) is also M•obius and normal o�set invariant.

3.3. Dual properties

Sincet 1 = ~t 2 and t 2 = ~t 1, we have

je1jds2
1 = j~e2jd~s2

2; je1jdA = j~e2jd ~A; je2jds2
2 = j~e1jd~s2

1; and je2jdA = j~e1jd ~A:

Now (3.4), (3.5), and relations ds1ds2 = dA and d~s1d~s2 = d ~A imply that

(k1 � k2)2

(~k1 � ~k2)2
=

je2j
j~e1j

=
je1j
j~e2j

=
c4

r 4 =
d ~A
dA

=
d~s1d~s2

ds1ds2
=

d~s2
1

ds2
2

=
d~s2

2

ds2
1

:

Therefore,

je1jds2
2 = j~e2jd~s2

1; je2jds2
1 = j~e1jd~s2

2;

je1j
(k1 � k2)2 =

j~e2j

(~k1 � ~k2)2
; and

je2j
(k1 � k2)2 =

j~e1j

(~k1 � ~k2)2
:

Further, let ~n be the unit normal vector of ~x , and then (3.2) implies that

ds1df 1

R2
1

= j~e2jd~s2
2 =

d~s2d ~f 2

~R2
2

and
ds2df 2

R2
2

= j~e1jd~s2
1 =

d~s1d ~f 1

~R2
1

where ~R1 = 1=~k1, ~R2 = 1=~k2, d ~f 1 = jd~f1j, d ~f 2 = jd~f2j, ~f1 = ~x + ~R1 ~n, and ~f2 = ~x + ~R2 ~n.

4. Curvature extremum curves
The surface creases are de�ned as zero-crossings of curvature extremalities e1 and e2.
The maximum (� 1) and minimum ( � 2) curvature extremum lines of M are characterized
by

� 1 : e1 = 0 ;
@e1
@t 1

< 0 and � 2 : e2 = 0 ;
@e2
@t 2

> 0: (4.1)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Extremum curves. (a): Input mesh M . (b): � 1 (maximum) of M . (c): � 2 (minimum)
of M . (d): Zooms of (b,c). (e): ~M which is an inversion of M where c = 0 :5. (f): ~� 1 of ~M mapped
onto M . (g): ~� 2 of ~M mapped onto M . (h): Zooms of (f,g).

(a) (b) (c) (d)

Figure 9. Extremum curves. Here the input mesh M and its inversion ~M are shown in the
images (a,b) and (c,d,e) of Fig. 1, respectively. (a): � 1 (maximum) of M . (b): � 2 (minimum) of
M . (c): ~� 1 of ~M mapped onto M . (d): ~� 2 of ~M mapped onto M .

Also let us de�ne the maximum (~� 1) and minimum (~� 2) curvature extremum lines of ~M
by

~� 1 : ~e1 = 0 ;
@~e1

@~t 1
< 0 and ~� 2 : ~e2 = 0 ;

@~e2

@~t 2
> 0: (4.2)

According to (3.5), a set of � 1 and � 2 is M•obius invariant. Unfortunately, their well-
employed subsets called ridges and crest lines are not M•obius invariant, since their de�ni-
tions include inequalities consist of principal curvatures. So it is interesting to investigate
(4.1) and (4.2) as M•obius invariant surface creases.

According to (3.5) and by using the principal coordinate system, we have

@~e1

@~t 1
= �

r 2

c6 (4r 2(t 2 � x )e2 + r 4 @e2
@s2

) and
@~e2

@~t 2
= �

r 2

c6 (4r 2(t 1 � x )e1 + r 4 @e1
@s1

):

Since ~e1 = 0 on ~� 1 implies e2 = 0 and ~e2 = 0 on ~� 2 implies e1 = 0, and therefore

@~e1

@~t 1
= �

r 6

c6

@e2
@s2

< 0 )
@e2
@t 2

> 0 on ~� 1 and
@~e2

@~t 2
= �

r 6

c6

@e1
@s1

> 0 )
@e1
@t 1

< 0 on ~� 2:

It leads that � 1 and � 2 are mapped onto ~� 2 and ~� 1, respectively by ~M = � (M ).



M•obius-invariant surface energies and ridges 8

(a) (b) (c) (d)

Figure 10. Dupin's cyclide and �ltering example. (a): A cyclide example. (b ): Input scanned
mechanical meshM . (c): Curvature extremum curves � 1 and � 2 of M . (d): Filtered extremum
curves of M via (4.3) where T � 9:0.

Figures 8 and 9 demonstrate dual sets of� i and ~� i , i = 1 ; 2 where remarkably similar
patterns are obtained for � 1 and ~� 2 as well as� 2 and ~� 1. In our numerical experiments,M
is orientated such that � 1 and � 2 correspond to the convex and concave shape features.
The detected extremum lines include small surface featureswhich are useful for some
application such as surface quality evaluation. However more salient surface creases are
preferable for other application, e.g. shape deformationsby feature curves.

Let us consider the so-called Dupin's cyclides which are minimizers of the MVS and
will-even-more (based on (3.7)) energies. The family of cyclides includes spheres, cylin-
ders, cones, and tori, and they have been employed for several shape modeling tasks,
see Foufou and Garnier (2004); Pottmann et al. (2008); Bo et al. (2011) for recent ap-
plications of the cyclides in geometric modeling as a CAGD primitive. The cyclides are
characterized by e1 = 0 = e2. Thus, the cyclides do not have surface creases. Small per-
turbation of cyclides leads to surface creases and detecting salient subsets of extremum
lines on a surface part close to cyclides is a di�cult computational task.

Let ds and d~s be the arc-lengths of a curvature extremum line onM and ~M , respec-
tively. The threshold proposed in (Yoshizawa et al. 2008)

T =
Z p

je1j + je2jds =
Z p

j~e1j + j~e2jd~s (4.3)

is M•obius invariant. Since T also measures deviation from cyclides, (4.3) is useful to
eliminate unessential extremum lines whereT is smaller than a given threshold value.
Figures 10-12 demonstrate how well our M•obius invariant thresholding scheme provides
salient subsets of the curvature extremum lines.

5. Conclusion
We studied the invariance properties of curvature-based energies and demonstrated their
application to salient crease detection on surface meshes.In addition, the principal curva-
ture derivatives along their corresponding curvature lines were investigated in connection
with the M•obius cross energy (2.1). It leads to (3.3) which is M•obius and normal o�-
set invariant. Developing applications of (3.3) to CG and CAD is our future work. One
possible application of (3.3) is character animation, since the Gauss's linking number
employed in Ho and Komura (2009) is closely related to (2.1) (He 2002).
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T � 0:0 T � 0:5 T � 1:5 T � 2:5

Figure 11. Filtering examples. Top and bottom images represent the �lte red curvature ex-
tremum curves via (4.3) for the input mesh M (top, � 1 and � 2) and its inversion ~M (bottom,
~� 1 and ~� 2) mapped onto M , respectively. Here the input and its inversion meshes are shown in
the images (a) and (e) of Fig. 8, respectively.

T � 0:0 T � 0:5 T � 1:4 T � 2:7

Figure 12. Filtering examples. Top and bottom images represent the �lte red curvature ex-
tremum curves via (4.3) for the input mesh M (top, � 1 and � 2) and its inversion ~M (bottom,
~� 1 and ~� 2) mapped onto M , respectively. Here the input and its inversion meshes are shown in
the images (a,b) and (c,d,e) of Fig. 1, respectively.
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Appendix A: Curvatures of ~x .
For a given surfacex = x (u; v), consider a parametric representation of spherical inver-
sion with its radius c: ~x = ~x (u; v) = c2

r 2 (u;v ) x (u; v) where r 2 = r 2(u; v) = x � x . Since
@(x �x )

@u = 2x u � x = 2 @r
@ur = 2 r u r and @(x �x )

@v = 2x v � x = 2 @r
@vr = 2 r v r , we haver u = x u �x

r
and r v = x v �x

r , and then the basic tangents of ~x are given by di�erentiating ~x w.r.t. u
and v:

@~x
@u

= ~x u = � 2
c2

r 4 (x u � x )x +
c2

r 2 x u ; (A.1)

@~x
@v

= ~x v = � 2
c2

r 4 (x v � x )x +
c2

r 2 x v (A.2)

where x u = @x
@u and x v = @x

@v are the basic tangents ofx . Then, their inner products
give us the coe�cients of the �rst fundamental form of ~x :

~E = ~x 2
u =

c4

r 4 E; ~F = ~x u � ~x v =
c4

r 4 F; ~G = ~x 2
v =

c4

r 4 G;

where E = x 2
u , F = x u � x v , and G = x 2

v are the coe�cients of the �rst fundamental
form of x . Thus, the area element of ~x is given by

ZZ
d ~A =

ZZ p
~E ~G � ~F 2 dudv =

ZZ
c4

r 4 dA;

where dA =
p

EG � F 2 dudv is the area element ofx .
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Let n be the unit normal vector of x . The unit normal vector of ~x is given by

~n =
~x u � ~x vp
~E ~G � ~F 2

= �
2
r 2 ((x v � x )x u � (x u � x )x v ) � x + n;

By using the formulas of vector triple product:

a � (b � c) = ( a � c)b � (a � b)c; (a � b) � c = ( c � a)b � (c � b)a;

we obtain

~n = �
2
r 2 (x � n) � x + n =

2
r 2 (x � n)x � n:

Di�erentiating (A.1) and (A.2), and their inner products wi th ~n lead to the coe�cients
of the second fundamental form of ~x :

~L = ~x uu � ~n = (8
c2

r 6 (x u � x )2x � 2
c2

r 4 (x uu � x + E)x +

� 4
c2

r 4 (x u � x )x u +
c2

r 2 x uu ) � (
2
r 2 (x � n)x � n)

= �
c2

r 2 (L +
2
r 2 (x � n)E);

and similar computations give us

~M = ~x uv � ~n = �
c2

r 2 (M +
2
r 2 (x � n)F ); ~N = ~x vv � ~n = �

c2

r 2 (N +
2
r 2 (x � n)G);

where L = x uu � n, M = x uv � n, and N = x vv � n are the coe�cients of the second
fundamental form of x .

Substituting the above results into the following formulas of the mean and Gaussian
curvatures provides

~H =
1
2

~E ~N � 2 ~F ~M + ~G~L
~E ~G � ~F 2

= �
r 2

c2 H � 2
(x � n)

c2 ;

~K =
~L ~N � ~M 2

~E ~G � ~F 2
=

r 4

c4 K + 4
r 2

c4 (x � n)H + 4
(x � n)2

c4

whereH = 1
2

EN � 2F M + GL
EG � F 2 and K = LN � M 2

EG � F 2 are the mean and Gaussian curvatures ofx ,

respectively. Let ~k1 and ~k2 be the principal curvatures of ~x then, substituting the above
equations to ~H = ( ~k1 + ~k2)=2, ~K = ~k1

~k2, ~k1 = ~H +
p

~H 2 � ~K , and ~k2 = ~H �
p

~H 2 � ~K
with k1 � k2, c2 > 0, and r 2 � 0 gives

~k1 = �
r 2

c2 k2 � 2
(x � n)

c2 ; ~k2 = �
r 2

c2 k1 � 2
(x � n)

c2

where k1 and k2 are the principal curvatures of x .

Appendix B: Curvature derivatives of ~x .
Di�erentiating ~k1 and ~k2 in (3.4) w.r.t. the parameters v and u, respectively, gives

@~k1

@v
= � 2

r
c2

x v � x
r

k2 �
r 2

c2

@k2
@v

� 2
x v � n + x � nv

c2 ;

@~k2

@u
= � 2

r
c2

x u � x
r

k1 �
r 2

c2

@k1
@u

� 2
x u � n + x � nu

c2 :
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In a small vicinity of non-umbilical point P of x , let us consider the lines of curvature
parameterized by their arc-lengths. Then the surface is locally represented in parametric
form x = x (u; v) for which

x u = t 1; x v = t 2;

and the Rodrigues'curvature formula (Struik 1988, p. 94) gives

nu = � k1t 1; nv = � k2t 2:

Now di�erentiating ~k1 and ~k2 in (3.4) along the non-corresponding curvature lines of
x gives

@~k1

@v
=

@~k1

@t 2
= � 2

r
c2

t 2 � x
r

k2 �
r 2

c2 e2 � 2
t 2 � n � k2t 2 � x

c2 = �
r 2

c2 e2;

where t 2 � n = 0 (because the principal directions live in the tangent plane of x ) and
similar computations give us @~k2

@u :

@~k1

@v
= �

r 2

c2 e2;
@~k2

@u
= �

r 2

c2 e1: (B.1)

Now let us denote by ~u and ~v the arc-length parameterizations of the ~k1 and ~k2

curvature lines of ~x , respectively, in a small vicinity of point ~P 2 ~x , the inversion image
of P 2 x . Then, according to jd ~x j = ( c2=r2)jdx j, we have

d~u = c2dv=r2; d~v = c2du=r2: (B.2)

In view of (B.1) and (B.2), we have

@~k1

@~t 1
=

@~k1

@~u
=

@v
@~u

@~k1

@v
=

r 2

c2 (�
r 2

c2 e2);
@~k2

@~t 2
=

@~k2

@~v
=

@u
@~v

@~k2

@u
=

r 2

c2 (�
r 2

c2 e1):

Consequently, the curvature derivatives ~e1 = @~k1=@~t 1 and ~e2 = @~k2=@~t 2 relate to e1

and e2 by the following equations:

c2

r 2 ~e1 = �
r 2

c2 e2;
c2

r 2 ~e2 = �
r 2

c2 e1:


