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Abstract

In this paper, we study Mebius-invariant curvature-based surface energies and char-
acteristic surface curves. We demonstrate how Mebius-ingriant curvature-based surface
energies can be used to achieve a better detection of saliestirface creases.

1. Introduction

Invariance is a foundational concept in physical theories ad mathematical construc-
tions. Invariance serves as a central pillar for pattern reognition and is of fundamental
importance for computer vision and geometric modeling apptations.

In this paper, we deal with curvature-based surface energg surface curves, and pa-
rameters which are invariant under Mebius transformations. The Lie group of Mebius
transformations is generated by inversions in spheres andh addition to the sphere inver-
sions, includes the translations, rotations, and similarty transformations (homotheties).
High importance of Mebius transformations and invariants is justi ed by Liouvilles the-
orem on conformal mappings which states that any smooth comfrmal mapping on a
domain of RY, d 3 is a Mebius transformation (see, for example, (Blair 2000). Fig-
ure 1 demonstrates an inversion of a complex mesh model. Cuature-based energies are
widely used in mathematical, physical, engineering, and hilogical studies. Various in-
variance properties of curvature-based energies make themseful computer vision and
geometric modeling applications.

In this study, we consider Mebius invariant curvature-based surface energies and use
them for a robust detection of salient surface creases. All umerical experiments pre-
sented in this paper are performed on surfaces approximatetly dense triangle meshes
where their di erential quantities are approximated by using the approach developed in
(Yoshizawa et al. 2008).

2. MBbius cross energy of a link

Consider a pair of curves ; and ; in Euclidean three-spaceE 2 as illustrated in Fig. 2 (a).
Let the curves be parameterized by their arc-lengthss; 2 1, and s, 2 1,, respectively.
The Mebius cross energyof the pair is de ned by

E( 1 2)= “ _Ondsy
’ 1 2%
I 12
It is easy to show that this energy is Mebius invariant (Freedman et al. 1994; He 2002).
Indeed let be an inversion w.r.t a sphere of radius centered at the origin of coordinates
O. Let x- and y- be the inversion images ok and y, respectively, as seen in Fig. 2 (b).
Then jx j5jy+j = jy j9xj and, therefore, the trianglesOxy and Oy-x are similar. Thus
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Figure 1. Inversion examples. (a,b): Input mesh. (c,d,e): Inversion of (a,b).
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Figure 2. Links, knots, and inversions. (a): a link and a knot. (b): an inve rsion w.r.t. sphere S.
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Mebius cross energyE( 1; 2) de ned by (2.1) is nite for a link but becomes in nite
for a knot. So various generalizations ofE(; ) are considered for knot analysis and
visualization purposes (O'Hara 2003).

3. MBebius energies of a surface

Consider a smooth surfaceM and a point x on it. Let s; and s, be the curvature line
arc-lengths corresponding to the curvature radiiR; = 1=k; and R, = 1=k,, where k;
and k, are the principal curvatures (k;  kz) of M at x . Denote by f; the arc-length of
the curve on the R;-focal surface corresponding tdk;-curvature line on M and by f, the
arc-length of the curve on theR,-focal surface corresponding tk,-curvature line on M,
see Figs 3 and 4.

According to (2.2) measure

dqd
(R1 R»)?
is Mebius invariant. It is not di cult to show that (Weather burn 1927, Art. 75)

(3.1)
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Figure 3. SurfaceM and its two corresponding focal surfaces.
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Figure 4. Focal surface examples. (a): Input ellipsoid mesh. (b): R:-focal surface of (a). (c):
R»-focal surface of (a). (d,e): Both focal surfaces of (a).

d,=j@R=@gds; and d;=j@R=@gds;: (3.2)
Denote by e; = @k=@s and e, = @k=@s the derivatives of the principal curvatures

ki and k, along their corresponding curvature lines, respectivelyNow (3.1), (3.2), and
relation ds;ds, = dA imply that

jeljjexjdA

(ki k)2 59
is Mebius invariant. Further, since (3.1) is invariant w.r .t. normal shifts, the same is true
for (3.3).

Now we provide the reader with a more traditional derivation of the Mebius invariance
of (3.1) and (3.3). Consider a smooth oriented surfacéM in E3. Let be an inversion
w.r.t a sphere of radiusc > 0 centered at the origin of coordinates. Denote byx and x
the position vectors of M and the inverse surfacavt = (M), respectively. Then we have

4
X = rcz—zx; dx- = rézdx Zédrx; dx? = rc—4dx2; where r=jxj:
It is not di cult to show that
r2 X n r2 X n
Ky = szkz 2( 2 ) and Ky = 2 k1 2( 2 ) (34)

wheren is the unit normal vector of x, K; and K, are the principal curvatures (K; K»)
of M at x-, see (Weatherburn 1927, Art. 82-83) or Appendix A for derivaions of (3.4).
Thus (ky  k2)2dA is Mebius invariant.
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Figure 5. Duality of principal curvatures and their corresponding pr incipal directions for the
input mesh M (a,b,e,f) and its inversion M (c,d,g,h). (a): ti. (b): tz. (c): t1. (d): t2. (€): ki. (f):
k2. (9): R1. (h): R2. Here the input and its inversion ( ¢ = 0:2) meshes are shown in (a,b) and
(c.,d,e) of Fig. 1, respectively.

Di erentiating the principal curvatures K; and K, of M along their corresponding
curvature lines yields (see Appendix B for detailed derivatons)

¢ re ¢ r? ¢ c
r761 = gez; r—zez = C—Zel; ds; = r—zdsz; and ds, = r—zdsl (3.5)

where s; and s are the arc-lengths of curvature lines ofW corresponding tok; and Ko,
respectively. Note that the curvature lines of M are mapped onto the curvature lines ofvi
such thatt; = t, and t, = tq1, wheret; and t, are the principal directions corresponding
to the principal curvatures K; and K, respectively, see Figs 5 and 6.

Therefore the measure (3.3) is Mebius invariant. Further, simple algebraic manipula-
tions (addition, multiplication, division) with the above formulas yield Mebius invariance
of

(+e)dA (er+e)?dA. (e e)%dA eedA (3.6)
(k1 k2)? ' (k1 kp)? ' (k1 kg)? ' (k1 k2)?’ '
q
(k1 ko)?dA; and e + e3dA: (3.7)

In particular, integration over M of (3.7) gives



M OBIUS ENERGIES OF A SURFACE 5

(@) (b)
Figure 6. Duality of principal directions. (a): Principal direction st; and t, of the input ellipsoid
mesh shown in Fig. 4 (a). (b): Principal directions t; and t> of inversion of (a) where c=1:0.

Figure 7. Normal o set examples.

Z Z q
(k1 k)’dA  and e + e3dA
M

M
which are the celebrated Willmore energy and a surface eneygwe call the will-even-
more energy: a novel Mebius invariant extension for minimum variation surfaces (MVS)
of (Moreton and Sequin 1992; Joshi and Squin 2007), respetively. Mebius invariance of
(k1 k2)?dA is also mentioned in (Blaschke 1929x74).

3.1. Normal o set invariance

Consider a normal o set surfaceM of M such that ¥ = x + n of M wheren is the
unit normal of x and 2 R is a constant, see Fig. 7 for some examples. L& and K,
be the principal curvatures of ¥ wherek; K. According to (Hosaka 1992), we have

dA=(1 ki) kzdA;  d&i=(1 ky)ds;  d&=(1 ko)ds;

_ ki _ ko
Ql—l kl, and Qg—l k2

where gy and $, are the arc-lengths of curvature lines ofvt corresponding tok; and K,
respectively.
By using the principal coordinate system, we have

= Q kl = @Q kl = el and éZ = e2
@1 ki1 @@sl ki (1 ki) (1 k)3
where & and &, are the derivatives of the principal curvatures k; and K, along their

corresponding curvature lines, respectively.
Therefore the measure (3.3) and last quantity in (3.6) are oset invariant.

€




Mebius-invariant surface energies and ridges 6

3.2. Focal surfaces
Consider the focal surfaces oM such that

1 1
= + — = + —n:
fi1=x kln and fa =X k2n.

Thus
@ @& 1@k 1 @ @& 1@k 1
——=— S—n+ —n and ——= — S —n+ —
@s @s kK@s ki @s @s ki@s ko
By using the principal coordinate system, we have

Ne,:

@_ &a . @_ e _ leieyj
@§ = k%n, @§ = kgn, and dlez = k%k% d31d52
where df; = jdf;j and of ; = jdf,j. Therefore,
did,  _ jejiejdA

(Rt R2)2 (ki k)2’

Since the right hand side of the above equation is equivalento (3.3) which is Mebius
and normal o set invariant, the measure (3.1) is also Mebius and normal o set invariant.

3.3. Dual properties
Sincet,; = th and t, = t7, we have
j@jdst = jepjdss;  jerjdA = jepjdA jeyjds) = jerjdst; and jerjdA = jerjdA:
Now (3.4), (3.5), and relations ds;ds, = dA and ds;ds, = dA imply that
(ki k2)® _jeoj _ jesj _ ¢ _ dA _ dsids, _ ds] _ dsp.

(Ri R»)2 Jej j&j 4 dA  dsids,  dsi ds?

Therefore,
jejds) = jesjdst;  jepjds] = jerjdsy;
e _ el L. el _ e
(k1 k2)2 (R, Rp)?’ (ki k2)2  (Ry  ky)2
Further, let r be the unit normal vector of x-, and then (3.2) implies that

ds;df ; ds,d, . ., dsdfy
R% R2 and R§ = jeqjds] = R?

- jeyjigz = 920

where Ry, = l:kl, R, = lzkz, dfy = jdf]_], df~2 = jdrgj, f]_ = x+ Rih, and rz = x+ RynA.

4. Curvature extremum curves
The surface creases are de ned as zero-crossings of curveguextremalities e; and e;.
The maximum ( 1) and minimum ( ») curvature extremum lines of M are characterized
by

@e @¢

e0=0; ——<0 and e=0; —>0: 4.1
1:€1 @ 2.6 @, 4.1)
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Figure 8. Extremum curves. (a): Input mesh M. (b): 1 (maximum) of M. (c): 2 (minimum)
of M . (d): Zooms of (b,c). (€): M which is an inversion of M where c = 0:5. (f): ~, of M mapped
onto M. (g): ~ of M mapped onto M . (h): Zooms of (f,g).

€Y (b) (©) (d)
Figure 9. Extremum curves. Here the input mesh M and its inversion M are shown in the
images (a,b) and (c,d,e) of Fig. 1, respectively. (a): 1 (maximum) of M. (b): > (minimum) of
M. (c): ~1 of M mapped onto M. (d): ~, of M mapped onto M .

Also let us de ne the maximum (~;) and minimum (~2) curvature extremum lines of M
by
~ e =0; @<O and ~ .6 =0; @>0: 4.2)
@ 2

According to (3.5), a set of ; and », is Mebius invariant. Unfortunately, their well-
employed subsets called ridges and crest lines are not Mebs invariant, since their de ni-
tions include inequalities consist of principal curvatures. So it is interesting to investigate
(4.1) and (4.2) as Mebius invariant surface creases.

According to (3.5) and by using the principal coordinate sysem, we have

@ 2 . @ @ 2 4@
— = —(4ro(t, x +r*"==) and — = —(4re(ty x)e +r*—==):
@1 06( ( 2 )ez @ﬁ) @_2 C6( ( 1 ) 1 @§
Sinceer =0 on ~; implies e, =0 and & =0 on ~, implies e; = 0, and therefore
@ r° @¢ @g @ r° @e @e
— = ———=<0) =—=>0 on and — = ——=>0) =—=<0 on :
@ s @5 ) Q> k @ s @s ) @H 2

It leads that ; and , are mapped onto » and ~, respectively by M = (M).
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Figure 10. Dupin's cyclide and ltering example. (a): A cyclide example. (b ): Input scanned
mechanical meshM . (c): Curvature extremum curves , and , of M. (d): Filtered extremum
curves of M via (4.3) where T 9:0.

Figures 8 and 9 demonstrate dual sets of; and ~, i = 1;2 where remarkably similar
patterns are obtained for ; and ~ as well as , and ~ . In our numerical experiments, M
is orientated such that ; and , correspond to the convex and concave shape features.
The detected extremum lines include small surface featuresvhich are useful for some
application such as surface quality evaluation. However mie salient surface creases are
preferable for other application, e.g. shape deformationdy feature curves.

Let us consider the so-called Dupin's cyclides which are mimizers of the MVS and
will-even-more (based on (3.7)) energies. The family of cyidles includes spheres, cylin-
ders, cones, and tori, and they have been employed for sevérshape modeling tasks,
see Foufou and Garnier (2004); Pottmann et al. (2008); Bo et k (2011) for recent ap-
plications of the cyclides in geometric modeling as a CAGD pmitive. The cyclides are
characterized bye; = 0= e,. Thus, the cyclides do not have surface creases. Small per-
turbation of cyclides leads to surface creases and detectinsalient subsets of extremum
lines on a surface part close to cyclides is a di cult computaional task.

Let ds and ds be the arc-lengths of a curvature extremum line onM and NI, respec-
tively. The threshold proposed in (Yoshizawa et al. 2008)

z z

T= jelj + jepjds = je1] + jejds 4.3)

is Mebius invariant. Since T also measures deviation from cyclides, (4.3) is useful to
eliminate unessential extremum lines wherel is smaller than a given threshold value.

Figures 10-12 demonstrate how well our Mebius invariant thresholding scheme provides
salient subsets of the curvature extremum lines.

5. Conclusion

We studied the invariance properties of curvature-based eergies and demonstrated their
application to salient crease detection on surface meshekn addition, the principal curva-
ture derivatives along their corresponding curvature lines were investigated in connection
with the Mebius cross energy (2.1). It leads to (3.3) which is Mebius and normal o -
set invariant. Developing applications of (3.3) to CG and CAD is our future work. One
possible application of (3.3) is character animation, sine the Gauss's linking number
employed in Ho and Komura (2009) is closely related to (2.1) le 2002).
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Figure 11. Filtering examples. Top and bottom images represent the Ite red curvature ex-

tremum curves via (4.3) for the input mesh M (top, 1 and ») and its inversion M (bottom,
~ and ~) mapped onto M, respectively. Here the input and its inversion meshes are shown in
the images (a) and (e) of Fig. 8, respectively.

T 00 T 05 T 14 T 27

Figure 12. Filtering examples. Top and bottom images represent the Ite red curvature ex-
tremum curves via (4.3) for the input mesh M (top, 1 and ;) and its inversion M (bottom,
~ and ~) mapped onto M, respectively. Here the input and its inversion meshes are sown in
the images (a,b) and (c,d,e) of Fig. 1, respectively.
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Appendix A: Curvatures of X
For a given surfacex = x (u; V), consider a parametric representation of spherical inver

sion with its radius ¢ x = x(u;Vv) = %x (u;v) wherer? = r?(u;v) = x x. Since
@X@fj) =2xy X =22 =2r,r and ax \)/‘) =2xy x =22 =2r,r, we haver, = *u*
and r, = *«Xand then the basic tangents ofx- are given by di erentiating x w.r.t. u

r 1
and v:

@ e 2

@u” Xu = 2r—4(xu X)X + r—zxu, (A1)
e . ¢

v Xy = 2r—4(xv X)X + r—zxv (A.2)

where x , = %J and x, = @v are the basic tangents ofx . Then, their inner products
give us the coe cients of the rst fundamental form of x-:

ct ct ¢
E':X‘ﬁ:rjE; F =Xy X“v:er; G:X“'\Z/:*G;
whereE = x2, F = x, Xy, and G = x2 are the coe cients of the rst fundamental
form of x . Thus, the area element ofx- is given by

2z 27 p 2z

dA = EG F2dudv= %dA;

wheredA = P EG FZ2dudv is the area element ofx .
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Let n be the unit normal vector of x . The unit normal vector of x- is given by
Xu X 2
r= pP=——== S((Xv X)Xu (Xu X)Xy) X +n;
EG F? r
By using the formulas of vector triple product:
a (b c¢)=(a c)b (a b)e;(a b) c=(c ab (c b)a

we obtain
2 2
R = r—z(x n) x+n:r—2(x n)x n:

Di erentiating (A.1) and (A.2), and their inner products wi th r lead to the coe cients
of the second fundamental form ofx-:

v v
L= Xu ﬁ:(Br*G(Xu X)X 2r7(xuu X+ E)x +
(o2 3 2
4r7(xu X)Xy + r*2)(uu) (ITZ(X n)x n)
c 2
rj('— + rj(x n)E);
and similar computations give us

@ 2 ¢? 2
M =Xy R= ﬁ(M + r72(x n)F); N =Xw R= ﬁ(N + ﬁ(x n)G);

whereL = xyw n,M = x4, n,and N = x,, n are the coe cients of the second
fundamental form of x .

Substituting the above results into the following formulas of the mean and Gaussian
curvatures provides

1EN 2FM + GC r2 X n
H=Z Gt —H 2( );
2 EG F? c? c?
CN M2 gt r? (x n)?
K= —— = _K+4—(x n)H +4
G Fz_ ot thak &
whereH = LEN _2FM+GL gnqg = LN_M’ 516 the mean and Gaussian curvatures of

2 EG F2 EG F2
respectively. LetK; and K, be the principal curvaturlgs of x- then, substituting Hwe above

equations toH = (Ry + K»)=2, K = RKiko, k= H+ H2 K,andk, = H H2 K
with k1 kp, 2> 0, andr? 0 gives
r2 X n

Rlz sz 2( CZ )

where k; and k, are the principal curvatures of x .

r2
; RKo= —=ki 2
; 2 2

(x_n)
2

Appendix B: Curvature derivatives of X
Di erentiating K; and K, in (3.4) w.r.t. the parameters v and u, respectively, gives

1 Xy X Xy X Y
@ o K r2 @k ) n+ Ny
@v cz r 2 2 @v c? '
@, I Xy X r2 @k X n+x ny.

@u 22 M Zau Z
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In a small vicinity of non-umbilical point P of x, let us consider the lines of curvature
parameterized by their arc-lengths. Then the surface is loally represented in parametric
form x = x (u;v) for which

Xy =11; Xy = 1]
and the Rodrigues'curvature formula (Struik 1988, p. 94) gves
ng = kity;  ny= kotz:

Now di erentiating K; and K, in (3.4) along the non-corresponding curvature lines of
X gives

@ _ @ rty x r2 t, n koty X r2

v @, - 2ok 3 2 = &y,

@v @ c? c? c? c2

wheret, n =0 (because the principal directions live in the tangent plane of x) and

similar computations give us %:

@ re @ re
— = e — = ey B.1
@v 2% @u 2t B.1)
Now let us denote by u-and w the arc-length parameterizations of the K; and K;
curvature lines of x-, respectively, in a small vicinity of point P 2 x-, the inversion image

of P 2 x. Then, according to jdxj = ( c?=r?)jdx j, we have
dtt = cdv=r?; dv = c2du=r?: (B.2)
In view of (B.1) and (B.2), we have

@& _ov& P @ &

_ _ @ @U@_ 2 r2
@ @

r
@ @v 2l g% @ @& @ @u 2l @&

Consequently, the curvature derivativeser = @;=@; and e, = @,=@- relate to e;
and e, by the following equations:

Co- P Go. .
rzel_ C2e21 rzez_ C21'



