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Abstract

In this paper, we study Möbius-invariant curvature-based surface energies and char-
acteristic surface curves. We demonstrate how Möbius-invariant curvature-based surface
energies can be used to achieve a better detection of salient surface creases.

1. Introduction

Invariance is a foundational concept in physical theories and mathematical construc-
tions. Invariance serves as a central pillar for pattern recognition and is of fundamental
importance for computer vision and geometric modeling applications.
In this paper, we deal with curvature-based surface energies, surface curves, and pa-

rameters which are invariant under Möbius transformations. The Lie group of Möbius
transformations is generated by inversions in spheres and, in addition to the sphere inver-
sions, includes the translations, rotations, and similarity transformations (homotheties).
High importance of Möbius transformations and invariants is justified by Liouvilles the-
orem on conformal mappings which states that any smooth conformal mapping on a
domain of Rd, d ≥ 3 is a Möbius transformation (see, for example, (Blair 2000)). Fig-
ure 1 demonstrates an inversion of a complex mesh model. Curvature-based energies are
widely used in mathematical, physical, engineering, and biological studies. Various in-
variance properties of curvature-based energies make them useful computer vision and
geometric modeling applications.

In this study, we consider Möbius invariant curvature-based surface energies and use
them for a robust detection of salient surface creases. All numerical experiments pre-
sented in this paper are performed on surfaces approximated by dense triangle meshes
where their differential quantities are approximated by using the approach developed in
(Yoshizawa et al. 2008).

2. Möbius cross energy of a link

Consider a pair of curves γ1 and γ2 in Euclidean three-space E3 as illustrated in Fig. 2 (a).
Let the curves be parameterized by their arc-lengths s1 ∈ I1 and s2 ∈ I2, respectively.
The Möbius cross energy of the pair is defined by

E(γ1, γ2) =

∫∫

I1×I2

ds1ds2
|γ1 − γ2|2

. (2.1)

It is easy to show that this energy is Möbius invariant (Freedman et al. 1994; He 2002).
Indeed let π be an inversion w.r.t a sphere of radius c centered at the origin of coordinates
O. Let x̃ and ỹ be the inversion images of x and y , respectively, as seen in Fig. 2 (b).
Then |x |/|ỹ | = |y |/|x̃ | and, therefore, the triangles Ox y and Oỹ x̃ are similar. Thus
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(a) (b) (c) (d) (e)

Figure 1. Inversion examples. (a,b): Input mesh. (c,d,e): Inversion of (a,b).

(a) (b)

Figure 2. Links, knots, and inversions. (a): a link and a knot. (b): an inversion w.r.t. sphere S.

|x |
|x − y | =

|ỹ |
|x̃ − ỹ | ,

|y |
|x − y | =

|x̃ |
|x̃ − ỹ | , and

|x ||y |
|x − y |2 =

|x̃ ||ỹ |
|x̃ − ỹ |2 .

It remains to note that

|dx̃ | = c2

|x |2 |dx | = |x ||x̃ |
|x |2 |dx | = |x̃ |

|x | |dx |, |dỹ | = |ỹ |
|y | |dy |,

and therefore,

|dx ||dy |
|x − y |2 =

|dx̃ ||dỹ |
|x̃ − ỹ |2 . (2.2)

Möbius cross energy E(γ1, γ2) defined by (2.1) is finite for a link but becomes infinite
for a knot. So various generalizations of E(γ, γ) are considered for knot analysis and
visualization purposes (O’Hara 2003).

3. Möbius energies of a surface

Consider a smooth surface M and a point x on it. Let s1 and s2 be the curvature line
arc-lengths corresponding to the curvature radii R1 = 1/k1 and R2 = 1/k2, where k1
and k2 are the principal curvatures (k1 ≥ k2) of M at x . Denote by f1 the arc-length of
the curve on the R1-focal surface corresponding to k1-curvature line on M and by f2 the
arc-length of the curve on the R2-focal surface corresponding to k2-curvature line on M ,
see Figs 3 and 4.

According to (2.2) measure

df1df2
(R1 −R2)2

(3.1)

is Möbius invariant. It is not difficult to show that (Weatherburn 1927, Art. 75)
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Figure 3. Surface M and its two corresponding focal surfaces.

(a) (b) (c) (d) (e)

Figure 4. Focal surface examples. (a): Input ellipsoid mesh. (b): R1-focal surface of (a). (c):
R2-focal surface of (a). (d,e): Both focal surfaces of (a).

df1 = |∂R1/∂s1|ds1 and df2 = |∂R2/∂s2|ds2. (3.2)

Denote by e1 = ∂k1/∂s1 and e2 = ∂k2/∂s2 the derivatives of the principal curvatures
k1 and k2 along their corresponding curvature lines, respectively. Now (3.1), (3.2), and
relation ds1ds2 = dA imply that

|e1||e2|dA
(k1 − k2)2

(3.3)

is Möbius invariant. Further, since (3.1) is invariant w.r.t. normal shifts, the same is true
for (3.3).

Now we provide the reader with a more traditional derivation of the Möbius invariance
of (3.1) and (3.3). Consider a smooth oriented surface M in E3. Let π be an inversion
w.r.t a sphere of radius c > 0 centered at the origin of coordinates. Denote by x and x̃

the position vectors of M and the inverse surface M̃ = π(M), respectively. Then we have

x̃ =
c2

r2
x , dx̃ =

c2

r2
dx − 2

c2

r3
drx , dx̃ 2 =

c4

r4
dx 2, where r = |x |.

It is not difficult to show that

k̃1 = −r2

c2
k2 − 2

(x · n)
c2

and k̃2 = −r2

c2
k1 − 2

(x · n)
c2

(3.4)

where n is the unit normal vector of x , k̃1 and k̃2 are the principal curvatures (k̃1 ≥ k̃2)
of M̃ at x̃ , see (Weatherburn 1927, Art. 82-83) or AppendixA for derivations of (3.4).
Thus (k1 − k2)

2dA is Möbius invariant.
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(a) (b)

(c) (d)

(e) (f) (g) (h)

Figure 5. Duality of principal curvatures and their corresponding principal directions for the
input mesh M (a,b,e,f) and its inversion M̃ (c,d,g,h). (a): t1. (b): t2. (c): t̃1. (d): t̃2. (e): k1. (f):

k2. (g): k̃1. (h): k̃2. Here the input and its inversion (c = 0.2) meshes are shown in (a,b) and
(c,d,e) of Fig. 1, respectively.

Differentiating the principal curvatures k̃1 and k̃2 of M̃ along their corresponding
curvature lines yields (see AppendixB for detailed derivations)

c2

r2
ẽ1 = −r2

c2
e2,

c2

r2
ẽ2 = −r2

c2
e1, ds̃1 =

c2

r2
ds2, and ds̃2 =

c2

r2
ds1 (3.5)

where s̃1 and s̃2 are the arc-lengths of curvature lines of M̃ corresponding to k̃1 and k̃2,
respectively. Note that the curvature lines ofM are mapped onto the curvature lines of M̃
such that t̃1 = t2 and t̃2 = t1, where t̃1 and t̃2 are the principal directions corresponding
to the principal curvatures k̃1 and k̃2, respectively, see Figs 5 and 6.

Therefore the measure (3.3) is Möbius invariant. Further, simple algebraic manipula-
tions (addition, multiplication, division) with the above formulas yield Möbius invariance
of

(e21 + e22)dA

(k1 − k2)2
,

(e1 + e2)
2dA

(k1 − k2)2
,

(e1 − e2)
2dA

(k1 − k2)2
,

e1e2dA

(k1 − k2)2
, (3.6)

(k1 − k2)
2dA, and

√

e21 + e22dA. (3.7)

In particular, integration over M of (3.7) gives
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(a) (b)

Figure 6. Duality of principal directions. (a): Principal directions t1 and t2 of the input ellipsoid
mesh shown in Fig. 4 (a). (b): Principal directions t̃1 and t̃2 of inversion of (a) where c = 1.0.

Figure 7. Normal offset examples.

∫

M

(k1 − k2)
2dA and

∫

M

√

e21 + e22dA

which are the celebrated Willmore energy and a surface energy we call the will-even-
more energy: a novel Möbius invariant extension for minimum variation surfaces (MVS)
of (Moreton and Séquin 1992; Joshi and Séquin 2007), respectively. Möbius invariance of
(k1 − k2)

2dA is also mentioned in (Blaschke 1929, §74).

3.1. Normal offset invariance

Consider a normal offset surface M̂ of M such that x̂ = x + αn of M where n is the
unit normal of x and α ∈ R is a constant, see Fig. 7 for some examples. Let k̂1 and k̂2
be the principal curvatures of x̂ where k̂1 ≥ k̂2. According to (Hosaka 1992), we have

dÂ = (1− αk1)(1− αk2)dA, dŝ1 = (1− αk1)ds1, dŝ2 = (1− αk2)ds2,

k̂1 =
k1

1− αk1
, and k̂2 =

k2
1− αk2

where ŝ1 and ŝ2 are the arc-lengths of curvature lines of M̂ corresponding to k̂1 and k̂2,
respectively.

By using the principal coordinate system, we have

ê1 =
∂

∂s̃1

k1
1− αk1

=
∂s1
∂s̃1

∂

∂s1

k1
1− αk1

=
e1

(1− αk1)3
and ê2 =

e2
(1− αk2)3

where ê1 and ê2 are the derivatives of the principal curvatures k̂1 and k̂2 along their
corresponding curvature lines, respectively.

Therefore the measure (3.3) and last quantity in (3.6) are offset invariant.
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3.2. Focal surfaces

Consider the focal surfaces of M such that

f1 = x +
1

k1
n and f2 = x +

1

k2
n.

Thus

∂f1
∂s1

=
∂x

∂s1
− 1

k21

∂k1
∂s1

n+
1

k1
ns1 and

∂f2
∂s2

=
∂x

∂s2
− 1

k22

∂k2
∂s2

n+
1

k2
ns2 .

By using the principal coordinate system, we have

∂f1
∂s1

= − e1
k21

n,
∂f2
∂s2

= − e2
k22

n, and df1df2 =
|e1||e2|
k21k

2
2

ds1ds2

where df1 = |df1| and df2 = |df2|. Therefore,

df1df2
(R1 −R2)2

=
|e1||e2|dA
(k1 − k2)2

.

Since the right hand side of the above equation is equivalent to (3.3) which is Möbius
and normal offset invariant, the measure (3.1) is also Möbius and normal offset invariant.

3.3. Dual properties

Since t1 = t̃2 and t2 = t̃1, we have

|e1|ds21 = |ẽ2|ds̃22, |e1|dA = |ẽ2|dÃ, |e2|ds22 = |ẽ1|ds̃21, and |e2|dA = |ẽ1|dÃ.

Now (3.4), (3.5), and relations ds1ds2 = dA and ds̃1ds̃2 = dÃ imply that

(k1 − k2)
2

(k̃1 − k̃2)2
=

|e2|
|ẽ1|

=
|e1|
|ẽ2|

=
c4

r4
=

dÃ

dA
=

ds̃1ds̃2
ds1ds2

=
ds̃21
ds22

=
ds̃22
ds21

.

Therefore,

|e1|ds22 = |ẽ2|ds̃21, |e2|ds21 = |ẽ1|ds̃22,

|e1|
(k1 − k2)2

=
|ẽ2|

(k̃1 − k̃2)2
, and

|e2|
(k1 − k2)2

=
|ẽ1|

(k̃1 − k̃2)2
.

Further, let ñ be the unit normal vector of x̃ , and then (3.2) implies that

ds1df1
R2

1

= |ẽ2|ds̃22 =
ds̃2df̃2

R̃2
2

and
ds2df2
R2

2

= |ẽ1|ds̃21 =
ds̃1df̃1

R̃2
1

where R̃1 = 1/k̃1, R̃2 = 1/k̃2, df̃1 = |df̃1|, df̃2 = |df̃2|, f̃1 = x̃ + R̃1ñ, and f̃2 = x̃ + R̃2ñ.

4. Curvature extremum curves

The surface creases are defined as zero-crossings of curvature extremalities e1 and e2.
The maximum (η1) and minimum (η2) curvature extremum lines of M are characterized
by

η1 : e1 = 0,
∂e1
∂t1

< 0 and η2 : e2 = 0,
∂e2
∂t2

> 0. (4.1)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Extremum curves. (a): Input mesh M . (b): η1 (maximum) of M . (c): η2 (minimum)

of M . (d): Zooms of (b,c). (e): M̃ which is an inversion of M where c = 0.5. (f): η̃1 of M̃ mapped

onto M . (g): η̃2 of M̃ mapped onto M . (h): Zooms of (f,g).

(a) (b) (c) (d)

Figure 9. Extremum curves. Here the input mesh M and its inversion M̃ are shown in the
images (a,b) and (c,d,e) of Fig. 1, respectively. (a): η1 (maximum) of M . (b): η2 (minimum) of

M . (c): η̃1 of M̃ mapped onto M . (d): η̃2 of M̃ mapped onto M .

Also let us define the maximum (η̃1) and minimum (η̃2) curvature extremum lines of M̃
by

η̃1 : ẽ1 = 0,
∂ẽ1

∂t̃1
< 0 and η̃2 : ẽ2 = 0,

∂ẽ2

∂t̃2
> 0. (4.2)

According to (3.5), a set of η1 and η2 is Möbius invariant. Unfortunately, their well-
employed subsets called ridges and crest lines are not Möbius invariant, since their defini-
tions include inequalities consist of principal curvatures. So it is interesting to investigate
(4.1) and (4.2) as Möbius invariant surface creases.

According to (3.5) and by using the principal coordinate system, we have

∂ẽ1

∂t̃1
= −r2

c6
(4r2(t2 · x )e2 + r4

∂e2
∂s2

) and
∂ẽ2

∂t̃2
= −r2

c6
(4r2(t1 · x )e1 + r4

∂e1
∂s1

).

Since ẽ1 = 0 on η̃1 implies e2 = 0 and ẽ2 = 0 on η̃2 implies e1 = 0, and therefore

∂ẽ1

∂t̃1
= −r6

c6
∂e2
∂s2

< 0 ⇒ ∂e2
∂t2

> 0 on η̃1 and
∂ẽ2

∂t̃2
= −r6

c6
∂e1
∂s1

> 0 ⇒ ∂e1
∂t1

< 0 on η̃2.

It leads that η1 and η2 are mapped onto η̃2 and η̃1, respectively by M̃ = π(M).
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(a) (b) (c) (d)

Figure 10. Dupin’s cyclide and filtering example. (a): A cyclide example. (b): Input scanned
mechanical mesh M . (c): Curvature extremum curves η1 and η2 of M . (d): Filtered extremum
curves of M via (4.3) where T ≥ 9.0.

Figures 8 and 9 demonstrate dual sets of ηi and η̃i, i = 1, 2 where remarkably similar
patterns are obtained for η1 and η̃2 as well as η2 and η̃1. In our numerical experiments, M
is orientated such that η1 and η2 correspond to the convex and concave shape features.
The detected extremum lines include small surface features which are useful for some
application such as surface quality evaluation. However more salient surface creases are
preferable for other application, e.g. shape deformations by feature curves.

Let us consider the so-called Dupin’s cyclides which are minimizers of the MVS and
will-even-more (based on (3.7)) energies. The family of cyclides includes spheres, cylin-
ders, cones, and tori, and they have been employed for several shape modeling tasks,
see Foufou and Garnier (2004); Pottmann et al. (2008); Bo et al. (2011) for recent ap-
plications of the cyclides in geometric modeling as a CAGD primitive. The cyclides are
characterized by e1 = 0 = e2. Thus, the cyclides do not have surface creases. Small per-
turbation of cyclides leads to surface creases and detecting salient subsets of extremum
lines on a surface part close to cyclides is a difficult computational task.

Let ds and ds̃ be the arc-lengths of a curvature extremum line on M and M̃ , respec-
tively. The threshold proposed in (Yoshizawa et al. 2008)

T =

∫

√

|e1|+ |e2|ds =
∫

√

|ẽ1|+ |ẽ2|ds̃ (4.3)

is Möbius invariant. Since T also measures deviation from cyclides, (4.3) is useful to
eliminate unessential extremum lines where T is smaller than a given threshold value.
Figures 10-12 demonstrate how well our Möbius invariant thresholding scheme provides
salient subsets of the curvature extremum lines.

5. Conclusion

We studied the invariance properties of curvature-based energies and demonstrated their
application to salient crease detection on surface meshes. In addition, the principal curva-
ture derivatives along their corresponding curvature lines were investigated in connection
with the Möbius cross energy (2.1). It leads to (3.3) which is Möbius and normal off-
set invariant. Developing applications of (3.3) to CG and CAD is our future work. One
possible application of (3.3) is character animation, since the Gauss’s linking number
employed in Ho and Komura (2009) is closely related to (2.1) (He 2002).
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T ≥ 0.0 T ≥ 0.5 T ≥ 1.5 T ≥ 2.5

Figure 11. Filtering examples. Top and bottom images represent the filtered curvature ex-
tremum curves via (4.3) for the input mesh M (top, η1 and η2) and its inversion M̃ (bottom,
η̃1 and η̃2) mapped onto M , respectively. Here the input and its inversion meshes are shown in
the images (a) and (e) of Fig. 8, respectively.

T ≥ 0.0 T ≥ 0.5 T ≥ 1.4 T ≥ 2.7

Figure 12. Filtering examples. Top and bottom images represent the filtered curvature ex-
tremum curves via (4.3) for the input mesh M (top, η1 and η2) and its inversion M̃ (bottom,
η̃1 and η̃2) mapped onto M , respectively. Here the input and its inversion meshes are shown in
the images (a,b) and (c,d,e) of Fig. 1, respectively.
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Appendix A: Curvatures of x̃ .

For a given surface x = x (u, v), consider a parametric representation of spherical inver-

sion with its radius c: x̃ = x̃ (u, v) = c2

r2(u,v)x (u, v) where r2 = r2(u, v) = x · x . Since
∂(x ·x )

∂u
= 2x u ·x = 2 ∂r

∂u
r = 2rur and ∂(x ·x )

∂v
= 2x v ·x = 2 ∂r

∂v
r = 2rvr, we have ru = x u·x

r

and rv = x v·x

r
, and then the basic tangents of x̃ are given by differentiating x̃ w.r.t. u

and v:

∂x̃

∂u
= x̃ u = −2

c2

r4
(x u · x )x +

c2

r2
x u, (A.1)

∂x̃

∂v
= x̃ v = −2

c2

r4
(x v · x )x +

c2

r2
x v (A.2)

where x u = ∂x
∂u

and x v = ∂x
∂v

are the basic tangents of x . Then, their inner products
give us the coefficients of the first fundamental form of x̃ :

Ẽ = x̃
2
u =

c4

r4
E, F̃ = x̃ u · x̃ v =

c4

r4
F, G̃ = x̃

2
v =

c4

r4
G,

where E = x
2
u, F = x u · x v, and G = x

2
v are the coefficients of the first fundamental

form of x . Thus, the area element of x̃ is given by
∫∫

dÃ =

∫∫

√

ẼG̃− F̃ 2 dudv =

∫∫

c4

r4
dA,

where dA =
√
EG− F 2 dudv is the area element of x .
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Let n be the unit normal vector of x . The unit normal vector of x̃ is given by

ñ =
x̃ u × x̃ v

√

ẼG̃− F̃ 2
= − 2

r2
((x v · x )x u − (x u · x )x v)× x + n,

By using the formulas of vector triple product:

a× (b× c) = (a · c)b− (a · b)c, (a× b)× c = (c · a)b− (c · b)a,
we obtain

ñ = − 2

r2
(x × n)× x + n =

2

r2
(x · n)x − n.

Differentiating (A.1) and (A.2), and their inner products with ñ lead to the coefficients
of the second fundamental form of x̃ :

L̃ = x̃ uu · ñ = (8
c2

r6
(x u · x )2x − 2

c2

r4
(x uu · x + E)x +

−4
c2

r4
(x u · x )x u +

c2

r2
x uu) · (

2

r2
(x · n)x − n)

= − c2

r2
(L+

2

r2
(x · n)E),

and similar computations give us

M̃ = x̃ uv · ñ = − c2

r2
(M +

2

r2
(x · n)F ), Ñ = x̃ vv · ñ = − c2

r2
(N +

2

r2
(x · n)G),

where L = x uu · n, M = x uv · n, and N = x vv · n are the coefficients of the second
fundamental form of x .

Substituting the above results into the following formulas of the mean and Gaussian
curvatures provides

H̃ =
1

2

ẼÑ − 2F̃ M̃ + G̃L̃

ẼG̃− F̃ 2
= −r2

c2
H − 2

(x · n)
c2

,

K̃ =
L̃Ñ − M̃2

ẼG̃− F̃ 2
=

r4

c4
K + 4

r2

c4
(x · n)H + 4

(x · n)2
c4

where H = 1
2
EN−2FM+GL

EG−F 2 and K = LN−M2

EG−F 2 are the mean and Gaussian curvatures of x ,

respectively. Let k̃1 and k̃2 be the principal curvatures of x̃ then, substituting the above

equations to H̃ = (k̃1 + k̃2)/2, K̃ = k̃1k̃2, k̃1 = H̃ +
√

H̃2 − K̃, and k̃2 = H̃ −
√

H̃2 − K̃
with k1 ≥ k2, c

2 > 0, and r2 ≥ 0 gives

k̃1 = −r2

c2
k2 − 2

(x · n)
c2

, k̃2 = −r2

c2
k1 − 2

(x · n)
c2

where k1 and k2 are the principal curvatures of x .

Appendix B: Curvature derivatives of x̃ .

Differentiating k̃1 and k̃2 in (3.4) w.r.t. the parameters v and u, respectively, gives

∂k̃1
∂v

= −2
r

c2
x v · x

r
k2 −

r2

c2
∂k2
∂v

− 2
x v · n+ x · nv

c2
,

∂k̃2
∂u

= −2
r

c2
x u · x

r
k1 −

r2

c2
∂k1
∂u

− 2
x u · n+ x · nu

c2
.
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In a small vicinity of non-umbilical point P of x , let us consider the lines of curvature
parameterized by their arc-lengths. Then the surface is locally represented in parametric
form x = x (u, v) for which

x u = t1, x v = t2,

and the Rodrigues’curvature formula (Struik 1988, p. 94) gives

nu = −k1t1, nv = −k2t2.

Now differentiating k̃1 and k̃2 in (3.4) along the non-corresponding curvature lines of
x gives

∂k̃1
∂v

=
∂k̃1
∂t2

= −2
r

c2
t2 · x
r

k2 −
r2

c2
e2 − 2

t2 · n− k2t2 · x
c2

= −r2

c2
e2,

where t2 · n = 0 (because the principal directions live in the tangent plane of x ) and

similar computations give us ∂k̃2

∂u
:

∂k̃1
∂v

= −r2

c2
e2,

∂k̃2
∂u

= −r2

c2
e1. (B.1)

Now let us denote by ũ and ṽ the arc-length parameterizations of the k̃1 and k̃2
curvature lines of x̃ , respectively, in a small vicinity of point P̃ ∈ x̃ , the inversion image
of P ∈ x . Then, according to |dx̃ | = (c2/r2)|dx |, we have

dũ = c2dv/r2, dṽ = c2du/r2. (B.2)

In view of (B.1) and (B.2), we have

∂k̃1

∂t̃1
=

∂k̃1
∂ũ

=
∂v

∂ũ

∂k̃1
∂v

=
r2

c2
(−r2

c2
e2),

∂k̃2

∂t̃2
=

∂k̃2
∂ṽ

=
∂u

∂ṽ

∂k̃2
∂u

=
r2

c2
(−r2

c2
e1).

Consequently, the curvature derivatives ẽ1 = ∂k̃1/∂t̃1 and ẽ2 = ∂k̃2/∂t̃2 relate to e1
and e2 by the following equations:

c2

r2
ẽ1 = −r2

c2
e2,

c2

r2
ẽ2 = −r2

c2
e1.


