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Abstract. Reliable detection of surface creases defined via loci of the principal curva-

tures along their corresponding curvature lines is important for many geometrical and

graphical applications. Multivariate analogues of such creases have received a consid-

erable attention in recent studies on multidimensional image visualization and analysis.

In this paper, we propose a numerically efficient and reliable approach for estimating

multidimensional curvature extremalities and detecting ridge-like structures in multi-

dimensional images. The approach is based on local fitting of hypercubic polynomials

and calculating their extremalities by using newly derived formulas. We also propose

a new thresholding scheme for removing spurious and unessential extremalities. We

test our approach by detecting crease structures on 2D and 3D real-world images and

demonstrating their ability to capture salient geometric image features.

Key Words: Curvature extremalities, multidimensional ridges and creases, multivariate

image analysis.

1. Introduction

Accurate and robust detection of surface and creases and associated skeletal structures is important

for many of computer graphics, geometric modeling, and medical imaging applications [9, 4, 7, 13].

Recent progress in multidimensional and multivariate data acquisition calls for developing ad-

vanced shape interrogation methods. In particular, extracting crease structures turns out to be useful

for computational fluid dynamics and medical imaging purposes [18, 17, 12] (see also references

therein).

1433-8157/$ 2.50 c© YEAR Heldermann Verlag, Berlin



2 S. Yoshizawa, A. Belyaev, and H. Yokota: Shape and Image Interrogation with Curvature Extremalities

In contrast to the so-called height ridges [8] and their multidimensional generalizations [4,

18, 17], the principal direction ridges are rarely used for multivariate data analysis. The principal

direction ridges possess beautiful mathematical properties [10, 14], have numerous 2D surface-

based analysis and modeling applications [9, 7, 13]. However their multivariate extensions may

seem too difficult to deal with. In this paper 1, we develop a computational theory of multivariate

principal direction ridges.

Our Approach. In this work, we introduce a multivariate analogue of the principal direction

ridges and propose an efficient numerical procedure for estimating multidimensional curvature ex-

tremalities. Our ridge detection method can be considered as an extension of our cubic-polynomial

fitting scheme developed in [20] for tracing salient curvature extrema on 2D surfaces approxi-

mated by dense triangle meshes, see Figure 1. We first derive a simple (and novel) formula for

extremalities of hyper-polynomial surfaces, and then the extremalities of images are estimated by

local fitting hyper-polynomial patches using our formula. We also introduce a differential invariant

measure based on the curvature extremalities (we call it cyclidity), and use it for detecting salient

ridge-like image structures.

In our study, we deal with more difficult problems than those considered in [4, 18, 17] and

study pure geometric surface ridges and their multidimensional analogues. Such ridges are invari-

ant w.r.t. the Euclidean motions, scale changes, and generalized inversions (conformal invariant),

and, therefore, being extracted from a multidimensional image, convey intrinsic information about

image geometry.

Paper Organization. The rest of paper is organized as follows. Sections 2 and 3 define curva-

ture extremalities and cyclidity measures for multidimensional surfaces, respectively. We derive a

simple formula of the extremalities in Section 4. Our algorithm of calculating the extremalities and

its numerical experiments are given in Sections 5 and 6, respectively. We conclude the paper in

Section 7.

Figure 1: Creases extracted on surface meshes by using the method of [20]. Red and blue lines

correspond to the salient extrema of principal curvatures along their curvature lines (a subset of

principal direction ridges called crest lines), respectively.

1It is an extension of our previous work [19]. The main difference from [19] is our thresholding scheme consisting

of the conformal invariant differential quantity (1) and its discrete implementation and numerical experiments.
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2. Curvature Extremalities

Consider a smooth hyper-surface (d-dimensional manifold) S in R
d+1. Let us assume that the

hyper-surface is defined parametrically, S = S(x) where the vector of parameters

x = (x1, x2, . . . , xd)

lives in R
d. The basic tangent vectors of S at x are given by Si = ∂S

∂xi
, i = 1, . . . , d. The unit

normal vector of S is defined by the so-called wedge product of S1 . . . ,Sd
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where {e1, . . . , ed+1} is the coordinate basis and
[

S
(1)
i , . . . ,S

(d+1)
i

]

are components of Si w.r.t. the

coordinate basis, i = 1, . . . , d.

Let us define the curvature tensor (generalization of the Waingarten map) of S by the d × d
matrix W = IIg−1, where the Riemannian covariant metric tensor g is given by the i-th row and

j-th column element gij =
∂S
∂xi

· ∂S
∂xj

, and the i-th row and j-th column element of the matrix II is

defined by IIij =
∂2S

∂xi∂xj
· n. Here a · b is the inner product between a and b. The quadratic forms

g and II are natural analogues of the two-dimensional first and second fundamental forms.

The d eigenvalues k1 ≤ k2 ≤ · · · ≤ kd and their corresponding eigenvectors {t1, t2, . . . , td} of

W give us the principal curvatures and directions of S .

We introduce generalized curvature extremalities of S as ei = ∂ki/∂ti = ∇ki · ti, where ∇ =
{∂/∂x1, ∂/∂x2, . . . , ∂/∂xd} is the standard gradient operator. Zero-crossings of ei, i = 1, 2, . . . , d
describe principal direction ridges on S .

3. Dupin’s Cyclides

The extremalities are closely related to a special family of surfaces called Dupin’s cyclides which

have been intensively studied in connection with various shape modeling tasks [3, 5]. The classical

2D Dupin’s cyclides live in three-dimensional space and can be characterized by the conditions

e1 = 0 = e2. A straightforward generalization leads us to the notion of Dupin hyper-surfaces

defined by a system of d equations ei = 0, i = 1, 2, · · · , d and, therefore, constituting hyper-

surfaces in R
d+1.

Let us introduce a cyclidity by

C =
d
∑

i

|ei|.

The cyclidity measures how a point on S is close to the Dupin hyper-surfaces. Recall the zero-

crossings of extremalities correspond to the surface creases. On the other hand, the cyclides do

not contain surface creases in general. Thus, the 2D analogue of cyclidity was employed in [20] to
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filter out the phantom surface creases around the surface parts close to the cyclides:

Tc =

∫

√

|e1|+ |e2|ds,

where the integral is calculated along each extracted creases, ds is the arclength element of the

crease, and Tc is invariant w.r.t. the conformal transformations [20]. Figure 2 demonstrates how

well our threshold Tc work to filter our phantom surface creases around the surface parts close to

the Dupin’s cyclides.

Input Creases Tc > 0.15 Tc > 2.8

Input Creases Tc > 1 Tc > 2 Tc > 3 Tc > 4 Tc > 5

Figure 2: Filtering phantom surface creases (crest lines) via the conformal invariant differential

quantity Tc [20]. The images show the filtered surface creases whose Tc is greater than the given

thresholds.

In this paper, we use the cyclidity together with {ei} for extracting salient ridge-like image

structures by employing the following integral (1).

TRd =

∫

(
d
∑

i=1

e2i )
d
4dA, (1)

where dA =
√

1 +
∑d

i=1 S
2
i dx1dx2...dxd is the area element of S . We model that (1) is also

the conformal invariant differential quantity, since the ridges are invariant under the conformal

transformations.
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4. Formula of Extremalities

Consider a multidimensional image xd+1 = I(x), x = (x1, x2, . . . , xd). For the sake of simplicity,

we deal with single-modality images, i.e., the image intensity I is a scalar function (our results can

be easily extended to multichannel images). Note that the equation xd+1 = I(x) defines a hyper-

surface in the extended spatial-tonal image space Rd+1 = {(x1, . . . , xd, xd+1)}. Our main task now

is to achieve fast and robust estimation of the extremalities {ei}. Note that the curvature extremal-

ities are shift and rotation invariant. The following formula is very useful because it significantly

reduces computational time needed for the curvature extremalities.

Main Formula. Assume that the coordinates in R
d+1 are chosen such that the origin of coor-

dinates 0 is situated on S = {xd+1 = I(x)} and the hyperplane formed by the coordinate axes

x1, . . . , xd is orthogonal to S at 0. Then the extremality e(x) of S at x = 0 is given by

e =
d
∑

i,j,l=1

Iijltitjtl, (2)

where Iijl = ∂3I(x)
∂xi∂xj∂xl

are third-order partial derivatives of I(x) and t = (t1, t2, . . . , td) is the

principal direction corresponding to the curvature extremality e.

Derivation of Main Formula. Let

t = (t1, t2, . . . , td+1) and n = (n1, n2, . . . , nd+1)

be a principal direction and the unit normal of S at (x, xd+1) ∈ R
d+1, respectively. Let us represent

S in implicit form

0 = I(x)− xd+1 ≡ F (x, xd+1).

Similar to the 3D case (see, for example, [11, 1]) the extremality e of

F (x, xd+1) = 0

is given by

e =
∂k

∂t
=

d+1
∑

i,j,l=1

Fijltitjtl + 3k
d+1
∑

i,j=1
Fijtinj

|∇F |
, (3)

where Fij =
∂2F

∂xi∂xj
and Fijl =

∂3F
∂xi∂xj∂xl

.

Since F (x, xd+1) ≡ I(x) − xd+1, we have Fi d+1 = 0. Further, ∇F ≡ (∇
x
I,−1) and

∇
x
I(0) = 0. Thus |∇F (0)| = 1. Note that the sum of Fijtinj in (3) the indices vary from 1

to d and, therefore, the sum vanishes because only the first d components of n(0) are zeros. For-

mula (2) is proved.

For the sake of completeness, we present here a derivation of (3). Assume that the components

of the surface orientation normal are given by ni = −Fi/g, where g = |∇F | is the absolute value

of the gradient. Let k, t, and s stand for a principal curvature, the associated principal direction,
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and the arclength parameter along the curvature line corresponding to k and t. According to the

Frenet formulas we have at a point on S

dt

ds
= kn,

dn

ds
= −kt.

Differentiating
d+1
∑

i=1

Fiti = 0 w.r.t. s yields

d

ds

(

d+1
∑

i=1

Fiti

)

=
d+1
∑

i,j=1

Fijtitj + k
d+1
∑

i=1

Fini =
d+1
∑

i,j=1

Fijtitj − kg.

Thus the principal curvatures k is given by

k =
1

g

d+1
∑

i,j=1

Fijtitj (4)

Note that
dg

ds
=

d+1
∑

i=1

giti =
1

g

d+1
∑

i,j=1

FijtiFj = −
d+1
∑

i,j=1

Fijtinj .

Finally differentiating (4) w.r.t. s yields

e =
dk

ds
=

d

ds

(

1

g

d+1
∑

i,j=1

Fijtitj

)

=
1

g

(

d+1
∑

i,j,l=1

Fijltitjtl + 3k
d+1
∑

i,j=1

Fijtinj

)

which is desired formula (3).

Relation to Derivative of Curvature Tensor. Our formula (2) can be also obtained by extend-

ing the derivative-of-curvature tensor derived by Rusinkiewicz [16] (see formula (8) there) to d-

manifolds. He used a 2 × 2 × 2 tensor composed by {∂W/∂x1, ∂W/∂x2} for 2-manifolds. The

curvature derivative w.r.t. t was given by multiplying t three times to the tensor. According to this

observation, the extremality of S is given by the gradient of the Waingarten map multiplying by t

three times: e = ∇W(t, t, t) where ∇W is a d × d × d tensor. Since the Waingarten map W is

equivalent to the Hessian of I(x) in our case because II becomes an identity matrix at x = 0, we

have

e = ∇Hess(I(x))(t, t, t) =
d
∑

i,j,l=1

Iijltitjtl.

Implementation to Cubic-Polynomials. By using our formula (2), the following simple forms

are derived for the 2D and 3D polynomials.

For a 2D cubic-polynomial

f(x1, x2) =
1

2
(b0x

2
1 + 2b1x1x2 + b2x

2
2) +

1

6
(c0x

3
1 + 3c1x

2
1x2 + 3c2x1x

2
2 + c3x

3
2),
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we have

W =

(

b0 b1
b1 b2

)

(5)

and

e =

(

t21
t22

)T (

c0 3c1
3c2 c3

)(

t1
t2

)

(6)

at (x1, x2) = (0, 0).
For a 3D cubic-polynomial

f(x1, x2, x3) =
1

2
(b0x

2
1 + 2b1x1x2 + 2b2x1x3 + b3x

2
2 + 2b4x2x3 + b5x

2
3) +

+
1

6
(c0x

3
1 + 3c1x

2
1x2 + 3c2x

2
1x3 + 3c3x

2
2x1 + c4x

3
2 + 3c5x

2
2x3 +

+3c6x1x
2
3 + 3c7x2x

2
3 + c8x

3
3),

we have

W =





b0 b1 b2
b1 b3 b4
b2 b4 b5



 (7)

and

e =





t21
t22
t23





T 



c0 3c1 3c2
3c3 c4 3c5
3c6 3c7 c8









t1
t2
t3



 (8)

at (x1, x2, x3) = (0, 0, 0).

5. Interrogation Algorithm

Let r and rf be the user-specified fitting and thresholding radii, respectively. We perform the fol-

lowing local polynomial fitting procedure to each image element (pixels/voxels) in order to obtain

{ei} and C.

Step 1: For an image element at xi, consider its (2r + 1)d neighboring elements centered at xi.

Fit the polynomial f(x) to I(x) − I(xi) in the least-squares sense by using the neighboring

elements.

Step 2: Calculate the Waingarten map W via the equation (5) or (7), and compute the eigenvalues

(principal curvatures {ki}) and eigenvectors (principal directions {ti}) of W.

Step 3: Obtain the curvature extremalities {ei} via the equation (6) or (8).

Step 4: Apply thresholding (if neccesary) to the obtained extremalities. Consider the (2rf + 1)d

neighboring elements centered at xi. In our implementation, we approximate the threshold

(1) by TRd ≈
∑(2rf+1)d

j=1 aj(
∑d

i=1(ti · ti,j)e
2
i,j)

d
4 , where aj , ti,j , and ei,j are the area element,

principal direction, and extremality of neighboring element centered at xi, respectively. We

estimate how the neighboring element is close to be located on the ridge-like structure at xi

by the inner-product of their principal directions (ti · ti,j). The second order central finite
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difference scheme is employed for approximating partial derivatives of
√

1 +
∑d

i |
∂I(x)
∂xi

|2 ≈
aj .

Discussion. In our current implementation of polynomial fitting, we did not use the normals of S ,

and we omitted a constant and linear terms. Although our fitting scheme provides smoother results

than the case of incorporating these terms, adapting the normal-based [6] or/and osculating jets [2]

fitting methods to our approach is promising to improve accuracy of polynomial fitting.

We employed same fitting radius for all image elements. Thus, the fitting process is time

consuming when the radius is large (especially for d ≥ 3). Adaptive radius fitting with multireso-

lution or/and scale-space strategy may accelerate our approach, and also gain flexible control over

extracting multi-scale features.

Future work includes developing a robust and efficient method to extract zero-crossings of the

computed extremalities.

6. Numerical Experiments

In our implementation, the singular value decomposition [15] for least-squares fitting and Jacobi

method [15] for eigenanalysis (because W is a real symmetric matrix in our case) were employed.

All our numerical experiments reported in this paper were performed on a Core2 Extreme X9770

(3.2 GHz quad core, no parallelization was used) PC with 16GB RAM and 64 bit OS.

We tested our approach on the real-world 2D and 3D images and find it useful for extracting

meaningful image structures, see Figures 3, 6, 7, 9, and 10. Since the extremalities vary with the

High Dynamic Range (HDR), we applied the following normalization technique for visualization

purposes. To map HDR values onto more intuitively visible domain, |ei| and C are normalized into

[0, 1] range and white (black) color corresponds to high (low) intensity value, while clipping 1% on

the low (black) end and 2% on the on the high (white) end of the histogram (16 bit bins). We also

used RGB color channels to visualize |ei| and C simultaneously. For example, the 2D extremalities

are visualized by ergb = (R,G,B) = (1 − |e1|, 1 − C, 1 − |e2|) in Figures 6 and 7. The convex

and concave edge regions are well distinguished similar to true ridges in meshes (as in Figure 1).

Similar coloring technique was also employed in the 3D images, see caption of Figures 9 and 10.

Our approach has a user-specified parameter for polynomial fitting: fitting radius (r). The

influence of changing the radius is demonstrated in Figure 6. As we can see the multi-scale features

as shadows in the left image of Figure 5, increasing the radius provides extraction of large size

ridge-like structures.

Figures 8 and 11 demonstrate our thresholding scheme applied to the extremalities of Lena and

MRI-Head images (Figures 7 and 10), respectively. We can see that the extremalities at the image

regions close to the Dupin’s cyclides (no creases) are adaptively removed according to increasing

the threshold (1) while the salient ridge-like structures are preserved well.

The computational complexity of our approach is linear (O((2r + 1)2d)) w.r.t. image size

(fitting radius, since the singular value decomposition possess quadratic complexity). We examined

computational time of our approach on varying image size (Figure 4) and radius (center and right

images of Figure 5). The slope of resulting timing lines are reasonably close to the complexity.

Our approach approximately processes 66K pixels and 8K voxels per second in average for small

fitting radius (r ≤ 5 and r ≤ 3), respectively.
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Figure 3: Input images: Lena (5122), Trui (2562), Mandrill (512x506), and Zebra (507x379).
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Figure 4: Computational time required for all necessary computations on 2D (left) and 3D (right)

images.
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r = 1 r = 4 r = 7

r = 10 r = 13 r = 16

r = 1 r = 4 r = 7

r = 10 r = 13 r = 16

Figure 6: Cyclidity (C, top two rows) and extremalities (ergb, bottom two rows) with varying the

fitting radius r. The image consisting of 768x512 pixels shown in the left image of Figure 5 took

2.9 (r = 1), 11 (r = 4), 27.2 (r = 7), 88.7 (r = 10), 172 (r = 13), and 251 (r = 16) seconds,

respectively for all necessary computations. Increasing the radius for our approach extracts the large

size ridge-like structures. See the shadow regions in the left image of Figure 5 and corresponding

parts in the above images.
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Cyclidity (r = 1): C

Extremalities (r = 1): ergb, timing: 1.96, 0.48, 1.93, and 1.44 seconds.

Cyclidity (r = 5): C

Extremalities (r = 5): ergb, timing: 10.66, 2.71, 10.46, and 8.05 seconds.

Figure 7: The images show both cyclidity C and extremalities ergb by using 32 and 112 pixel

neighborhoods for polynomial fitting, where the input images are given in Figure 3. Timings listed

above present computational times required for all necessary computations. Here red and blue

regions correspond to low value (close to zero) of |e1| and |e2|, respectively.
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TR2 > 0.1Ta TR2 > 0.4Ta TR2 > 0.8Ta TR2 > 1.6Ta

Figure 8: Filtering phantom ridge-like structures via the conformal invariant differential quantity

(1), where the input image is shown in Figure 3, the extremalities (ergb) corresponding to TR2 ≥ 0
are illustrated in Figure 7 (upper: r = 1 and bottom: r = 5), we use rf = 5, and Ta is an average

of TR2 within the input image.

(a) (b) (c) (d) (e) (f)

Figure 9: 3D extremalities of CT-Engine (2562x110) took 6.4 and 85 minutes respectively for

r = 1 and r = 3. (a): volume rendering of {|e1|, |e2|, |e3|} where RGB color channels are given by

(R,G,B) = (1−|e1|, 1−|e2|, 1−|e3|). (f): sectional images of (a). (b,c,d,e): sectional images where

their locations correspond to (f), and their RGB color channels consist of (1 − C, 1 − C, 1 − C),
(1−|e1|, 1−|e2|, 1−C), (1−|e1|, 1−C, 1−|e3|), and (1−C, 1−|e2|, 1−|e3|), respectively. The

upper and bottom images are obtained by using 33 (r = 1) and 73 (r = 3) voxel neighborhoods to

the fitting process, respectively.
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(a) r = 1 (b) (a) r = 3 (b)

(c) (d) (e) (f)

Figure 10: 3D extremalities of MRI-Head (2563) took 17 and 195 minutes respectively for r = 1
and r = 3. (a): volume rendering of {|e1|, |e2|, |e3|} where RGB color channels are given by

(R,G,B) = (1 − |e1|, 1 − |e2|, 1 − |e3|). (f): sectional images of (a). (b,c,d,e): sectional images

where their locations correspond to (f), and their RGB color channels consist of (1−C, 1−C, 1−C),
(1−|e1|, 1−|e2|, 1−C), (1−|e1|, 1−C, 1−|e3|), and (1−C, 1−|e2|, 1−|e3|), respectively. The

upper and bottom images are obtained by using 33 (r = 1) and 73 (r = 3) voxel neighborhoods to

the fitting process, respectively.
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TR3 > 0.4Ta TR3 > 0.8Ta TR3 > 1.2Ta TR3 > 1.6Ta

Figure 11: Filtering phantom ridge-like structures via the conformal invariant differential quantity

(1), where the input image and its extremalities (R,G,B) = (1−|e1|, 1−|e2|, 1−|e3|) corresponding

to TR3 ≥ 0 are illustrated in Figure 10 (upper: r = 1 and bottom: r = 3), we use rf = 5, and Ta is

an average of TR3 within the input image.

7. Conclusion

In this paper, we have developed a numerically efficient approach to extracting the curvature ex-

tremalities from multidimensional images. We have also introduced the formula and differential

invariant measure for extremalities. Our numerical experiments demonstrate that the proposed ap-

proach is capable of detecting salient ridge-like image structures on real-world images. We believe

that our study in a multidimensional analogue of the surface creases as geometric shape descriptors

will be beneficial to obtain new aspects of feature analysis in early vision tasks.
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