
International Journal of Shape Modeling

Vol. 11, No.1 (2005) 25-42
c© World Scientific Publishing Company

A MOVING MESH APPROACH TO STRETCH-MINIMIZING

MESH PARAMETERIZATION

SHIN YOSHIZAWA

AG4, MPI Informatik, Stuhlsatzenhausweg 85, 66123, Saarbrücken, Germany

shin.yoshizawa@mpi-sb.mpg.de

ALEXANDER BELYAEV

AG4, MPI Informatik, Stuhlsatzenhausweg 85, 66123, Saarbrücken, Germany

belyaev@mpi-sb.mpg.de

HANS-PETER SEIDEL

AG4, MPI Informatik, Stuhlsatzenhausweg 85, 66123, Saarbrücken, Germany

hpseidel@mpi-sb.mpg.de

We propose to use a moving mesh approach, a popular grid adaption technique in com-

putational mechanics, for fast generating low-stretch mesh parameterizations. Given a
triangle mesh approximating a surface, we construct an initial parameterization of the

mesh and then improve the parameterization gradually. At each improvement step, we
optimize the parameterization generated at the previous step by minimizing a weighted
quadratic energy where the weights are chosen in order to minimize the parameteriza-

tion stretch. This optimization procedure does not generate triangle flips if the boundary
of the parameter domain is a convex polygon. Moreover already the first optimization
step produces a high-quality mesh parameterization. We compare our parameterization

procedure with several state-of-art mesh parameterization methods and demonstrate its

speed and high efficiency in parameterizing large and geometrically complex models.

Keywords: mesh parameterization; stretch minimization; remeshing.

2000 Mathematics Subject Classification: 68U05, 65D18, 65D17

1. Introduction

Surface parameterization consists of a surface decomposition into a set of patches,

also referred to as an atlas of charts, and establishing one-to-one mappings between

the patches and reference domains. Numerous applications of surface parameteriza-

tion in computer graphics and geometric modeling include texture mapping, shape

morphing, surface reconstruction and repairing, and grid generation.

In this paper †, we deal with a planar parameterization for a triangle mesh

approximating a smooth surface, a bijective mapping between the mesh and a

†It is an extension of our previous work 25.

1

2 Shin Yoshizawa, Alexander Belyaev, Hans-Peter Seidel

(a) (b) (c) (d)

Fig. 1. Texture mapping of the Mannequin Head model with three mesh parameterizations used

in our method. (a) Texture and model. (b) Floater’s shape preserving parameterization is used as

an initial mesh parameterization. (c) After a single optimization pass. (d) Our optimal low-stretch
parameterization.

triangulation of a planar polygon. An excellent survey of recent advances in mesh

parameterization is given in 10, see also references therein. While various algorithms

are developed for mesh parameterization approaches based on solid mathematical

theories (e.g., conformal mappings), effective computational schemes for generat-

ing practically important low-stretch mesh parameterizations 21 have not yet been

proposed.

Consider a surface S ∈ R
3 topologically equivalent to a disk and given para-

metrically by p(s, t) = [x(s, t), y(s, t), z(s, t)]. The Jacobian matrix corresponding

to the mapping p is given by J = [∂p/∂s, ∂p/∂t,]. The Jacobian J determines all

the first-order geometric properties of the parameterization p(s, t), including the

area, angle, and length distortions caused by the mapping p.

Denote by Γ(s, t) and γ(s, t) the maximal and minimal singular values of J .

Consider the first fundamental form of S:

dl2 = E(s, t)ds2 + 2F (s, t)dsdt + G(s, t)dt2,

where E = p2
s, F = ps ·pt, and G = p2

t . Then Γ2 and γ2 are the eigenvalues of the

metric tensor

JT J =

[

E F

F G

]

.

It is convenient to use Γ and γ for measuring various properties of p. For example,

if Γ(s, t) = γ(s, t), the parameterization is conformal and mapping p = p(s, t)

preserves angles.

Since the conformal mappings are well understood mathematically, discrete ap-

proximations of conformal mappings are widely used for mesh parameterization

purposes 12,14,6,11. However conformal mappings often produce high stretch regions

where texture mappings have severe undersampling artifacts.

A moving mesh approach to stretch-minimizing mesh parameterization 3

It is natural to measure the local stretch of mapping p = p(s, t) by
√

(Γ2 + γ2) /2 =
√

(E + G) /2 21. Stretch minimizing mesh parameterizations were

considered in 21,20,18. See also 23 where a similar stretch measure is proposed and
17,27 where the Green-Lagrange tensor is used to measure the stretch.

While the stretch minimization approach proposed in 21 and further developed

in 20 and 27 leads to generating high-quality mesh parameterizations, the com-

putational procedure used in 21,20,27 for stretch minimization is time consuming.

Besides the mesh parameterization procedure of 21,20 often generates regions of high

anisotropic stretch, consisting of slim triangles. Such the regions on a parameter-

ized and textured mesh look like cracks and we call them parameter cracks. Figure 2

demonstrates an appearance of such parameter cracks on the textured Mannequin

Head model parametrized by the stretch minimization method from 21.

Parameterization
Parameter Crack

Texture Mapping

Fig. 2. Parameter cracks on textured Mannequin Head model parametrized by the stretch mini-

mization method of Sander et al.

In 18 the authors propose to add a regularization term to the stretch energy

in order to avoid parameter cracks. The term depends on two parameters. Besides

minimizing the resulting energy does not produce a minimal stretch parameteriza-

tion.

In this paper, we develop a simple and fast method for generating low-stretch

mesh parameterizations. Given a triangle mesh, we first construct an initial mesh

parameterization and then improve the parameterization gradually: at each im-

provement step we optimize the parameterization generated at the previous step.

The optimization is achieved by minimizing a weighted quadratic energy with posi-

tive weights chosen to minimize the parameterization stretch. Thus the single opti-

mization step is fast since it is based on solving a sparse system of linear equations.

4 Shin Yoshizawa, Alexander Belyaev, Hans-Peter Seidel

Besides if the boundary of the parameterization domain forms a convex polygon,

triangle flips never happen 8.

Our method can be considered as an error redistribution (diffusion) procedure

applied to local stretches. The error redistribution (also known as the moving mesh

method or r-method) is a powerful mesh adaption technique in computational me-

chanics (see, for example, 15,4 and references therein). It has become popular after

seminal works of De Boor 5 and Babuuska and Rheiboldt 2. The general idea behind

the approach is extremely simple: let us move mesh vertices to positions where they

are mostly needed. Obviously this leads to error equalization w.r.t. a user-specified

error measure (energy) often called a monitor function in computational mechanics

studies. Error equalization resembles a diffusion process and can be governed by a

system of partial differential equations 4,24. In the geometric modeling field, it gen-

eralizes Laplacian smoothing and similar ideas were used for mesh parameterization

purposes 22,25,26 and optimizing texture maps 3.

We compare our low-stretch mesh parameterization procedure with several

state-of-art mesh parameterization methods and demonstrate its speed and high

efficiency in parameterizing large and geometrically complex models. Besides we

show how our mesh parameterization approach can be combined with the interac-

tive geometry remeshing scheme of Alliez et al. 1 in order to achieve fast and high

quality remeshing.

Figure 1 shows the three stages of our mesh parameterization method: generat-

ing an initial parameterization, our single-pass low-stretch parameterization, and

the optimal low-stretch parameterization.

The rest or the paper is organized as follows. In Section 2 we explain our low-

stretch mesh parameterization procedure and give a motivation behind it. We evalu-

ate our method and compare it with state-of-art mesh parameterization techniques

in Section 3. In Section 4, we discuss how the procedure depends on the initial mesh

parameterization and consider meshes with multiple boundaries. We conclude in

Section 5.

2. Low stretch mesh parameterization

Given a parametrized triangle mesh M ∈ R
3, consider a mesh triangle T =

〈p1,p2,p3〉 ∈ M and its corresponding triangle U = 〈u1,u2,u3〉 in the parametric

plane R
2
s,t. Triangles {U} define a planar mesh U ∈ R

2
s,t and the parameterization of

M is given by one-to-one mapping between meshes U and M. The correspondence

between the vertices of T and U uniquely defines an affine mapping P : U → T .

Let us denote by Γ(T) and γ(T) the maximal and minimal eigenvalues of the metric

tensor induced by the mapping 21,27. As we mentioned above, quantity

σ(U) =
√

(Γ2 + γ2) /2

characterizes the stretch of mapping P .

For each vertex ui in the parameter domain let us define its stretch σi = σ(ui)

A moving mesh approach to stretch-minimizing mesh parameterization 5

by

σi =

√

∑

A(Tj)σ(Uj)2
/

∑

A(Tj) (1)

where A(T) denotes the area of triangle T and the sums are taken over all triangles

Tj surrounding mesh vertex pi corresponding to ui.

Our method to build a low stretch mesh parameterization consists of several

steps. First we construct an initial mesh parameterization using the Floater ap-

proach 8: the boundary vertices of mesh M are mapped into the boundary vertices

of U which form a polygon in the parameter plane R
2
s,t and for each inner vertex

pi of M its corresponding vertex ui inside the polygon is selected such that the

following local quadratic energy

E(ui) =
∑

j
wij ||uj − ui||

2, (2)

achieves its minimal value. Here {uj} are vertices corresponding to the mesh one-

link neighbors of pi ∈ M and {wij} are positive weights. Now the optimal positions

for ui are found by solving a sparse system of linear equations
∑

j
wij (uj − ui) = 0. (3)

This computationally simple procedure produces a valid parameterization of mesh

M and avoids triangle flips if the boundary of U is a convex polygon 8.

Notice that modifying weights {wij} in quadratic energy (2) and, consequently,

in (3) modifies the mesh parameterization. Thus one can improve the mesh pa-

rameterization initially determined by (3) with weights
{

wold
ij

}

via selecting better

weights
{

wnew
ij

}

. In our mesh optimization procedure, we exploit this simple ob-

servation and choose weights
{

wnew
ij

}

such that vertices {uj} are moved toward

locations where they are mostly needed.

Let us estimate local stretch σi = σ(ui) for each inner vertex ui in the para-

metric plane. We redistribute the local stretches by assigning

wnew
ij = wold

ij

/

σj (4)

in (2). The new positions of {ui} are now found by solving (3).

We can think about vertices {ui} and corresponding energies (2) in terms of

a mass-spring system. For an area preserving parameterization, if a high (low)

stretch is observed at ui, that is σi > 1 (σi < 1), we relax (strengthen) the springs

connected with ui by solving (3) with new weights (4). It works similarly for a

general parameterization.

Our idea to diffuse the local stretches iteratively by (1), (3), (4) resembles mesh

moving techniques discussed in the previous section.

We start from an initial parameterization U0 =
{

u0
i

}

and then improve it

gradually: Uh+1 =
{

uh+1
i

}

is obtained from Uh =
{

uh
i

}

by solving (3) with weights

wh+1
ij defined by

wh+1
ij = wh

ij

/

σ
(

uh
j

)

.

6 Shin Yoshizawa, Alexander Belyaev, Hans-Peter Seidel

We select w0
ij as the shape preserving weights proposed by Floater 8 . The

boundary vertices of the evolving mesh Uh, h = 0, 1, 2, . . . , remain fixed. When

solving (3) with wij = wh+1
ij numerically we use Uh as the initial guess for the

numerical solver we employ.

We use the L2 stretch metric of Sander et al. 21

Eh
s = Es(U

h) =
√

∑

A(T)σ(Uh)2/
∑

A(T), (5)

where the sums are taken over all the triangles T of mesh M, to define a stopping

criterion. Namely, if Eh+1
s ≥ Eh

s we consider Uopt =
{

uh
i

}

as an optimal low stretch

mesh parameterization.

Besides Uopt we also consider U1 =
{

u1
i

}

, the mesh parameterization obtained

after one step of our optimization procedure since, according to our experiments,

already the first step dramatically improves the parameterization quality.

We also can vary the strength of stretch redistribution (diffusion) step (4) by

using the weights {ση
i }, 0 < η ≤ 1, instead of {σi} in (4):

wnew
ij = wold

ij

/

ση
j . (6)

Using (6) with η < 1 slows down the stretch minimization process but, on the

other hand, often improves the mesh parameterization quality. The influence of

exponent η in (6) is demonstrated in Figure 9 for our single-step parameterization

U1. Choosing smaller values for η leads to a less aggressive stretch minimization.

In the next section, we compare U1 and Uopt with results produced by conven-

tional mesh parameterization schemes.

3. Results and comparisons

Computing. All the examples presented in this section are computed using

gcc 2.95 C++ compiler on a 1.7GHz Pentium 4 computer with 512MB RAM. To

solve a system of linear equation Ax = b we use PCBCG 19 with the maximum

number of iterations equal to 104 and the approximation error |Ax − b| /|b| set to

10−6.

Error metrics. To evaluate the visual quality of a parameterization we use the

checkerboard texture shown in the bottom-left image of Figure 2. For a quantitative

evaluation of various mesh parameterization methods we employ L2 stretch metric

(5) and consider edge, angle, and area distortion error functions defined below. To

measure the edge distortion error we use

∑

∣

∣

∣

∣

|pi − pj |
∑

|pi − pj |
−

|ui − uj |
∑

|ui − uj |

∣

∣

∣

∣

,

where the sums are taken over all the edges of meshes M and U . The angle distortion

error is defined by

1

3F

∑

j

3
∑

i=1

|θj,i − φj,i| ,

A moving mesh approach to stretch-minimizing mesh parameterization 7

where the sums are taken over all the angles θj,i and φj,i of the triangles of meshes

M and U , respectively, and F is the total number of triangles (faces) of M. The

area distortion is measured by

∑

∣

∣

∣
A (Tj) /

∑

A (Tj) − A (Uj) /
∑

A (Uj)
∣

∣

∣
,

where the sums are taken over all the triangles of meshes M and U .

Comparison and evaluation. We have implemented a number of conventional

mesh parameterization methods and compared them with our low stretch technique:

(a) Eck et al. harmonic map 7

(b) Floater’s shape preserving parameterization 8

(c) Desbrun et al. intrinsic parameterization 6

(d) Sander et al. stretch minimizing parameterization 21

(e) Our single-step parameterization U1

(fh) Our optimal parameterization Uopt

The subindex h in (fh) in the bottom row of the above table shows the total

number of optimization steps (3), (4) needed to generate U opt.

Tables 1-12 and Figures 6-8, and 11 present qualitative and visual comparisons

of the above mesh parameterization schemes tested on various models topologically

equivalent to a disk. The unit square is used as the parameter domain and for each

models its the boundary vertices are fixed on the boundary of the square. The errors

and computational times measured in seconds (s) and sometimes in minutes (m)

and hours (h) are given.

For the intrinsic parameterization method 6, we use the equal blending of the

Dirichlet and Authalic energies for all the models, except for the Fish model (Ta-

ble 11) where we use only the Dirichlet energy in order to avoid triangle flips.

Our single-step mesh parameterization procedure (generating U 1) is only slightly

slower than the fast Floater and Eck et al. parameterization methods and faster

than the intrinsic parameterization of Desbrun et al. 6. Besides U1 demonstrates

competitive results in minimizing the stretch, edge, area, and angle distortions.

Our optimal mesh parameterization procedure is also fast enough and sometimes

achieves better results in stretch minimizing than the probabilistic minimization of

Sander et al. 21 which is very slow. Moreover, by contrast with 21, Uopt does not

generate parameter cracks (see Figure 11) because (3) acts like a diffusion process.

Besides, if a very low stretch parameterization is needed, U opt can be used as an

initial parameterization for 21.

Figure 12 shows Uopt parameterization of the Mannequin Head model when the

parameter domain has boundaries of various shapes. The left images show the pa-

rameterization and corresponding texture mapping results when the boundary is

8 Shin Yoshizawa, Alexander Belyaev, Hans-Peter Seidel

the unit circle. The right images demonstrate similar results when the boundary of

the parameter domain was obtained as the so-called natural boundary for the con-

formal parameterization of 6. Notice that the stretch distortions near the boundary

are substantially reduced in the latter case.

In Figure 13 mesh parameterizations U0, U1, and Uopt are evaluated and com-

pared using the checkerboard texture. Sometimes U opt does not produce the best

visual result because of high anisotropy and U1 is preferable. Finally, in Figure 14

we analyze how the stretch distribution over a complex geometry model is changing

during the optimization process U0 → U1 → Uopt. The top row of images presents

the model (a decimated Max-Planck bust model) and results of checkerboard tex-

ture mapping with U0, U1, and Uopt. The four remaining images of the model show

the stretch distribution over the model for U0, U1, and Uopt parameterizations.

The images demonstrate how well our stretch minimization procedures minimize

and equalize the stretch. It is interesting to notice that near the mesh boundary the

optimized meshes have large area and angle distortions (the same effect is observed

in all the other tested models) but relatively low stretch distortions. One can hope

that an appropriate relaxation of boundary conditions will reduce those area and

angle distortions while maintaining low stretch.

Application to remeshing. In the right columns of Figures 6-8 and in Figure 10

we demonstrate how our mesh parameterization technique can be used for fast

and high quality remeshing of complex surfaces. We have chosen the interactive

geometry remeshing scheme of Alliez et al. 1 and implemented its main steps:

(1) Create a mesh parameterization.

(2) Compute area, curvature, and control maps using hardware accelerated

OpenGL commands.

(3) Sample points by applying an error diffusion to the control map.

(4) Connect the points using the Delaunay triangulation.

(5) Use the parameterization to map the points into 3D.

A conformal mesh parameterization is the best choice for the described remeshing

scheme.

It is clear that the remeshing quality depends on the size of an image used for

the hardware assisted acceleration: the bigger size, the better result. On the other

side, the image size is restricted by the graphics card memory. It turns out that a

high quality remeshing can be obtained even for a relatively small image size. Let us

assume that we have two parameterizations of a 3D mesh: a conformal parameteri-

zation and an area-preserving one. Then let us the area-preserving parameterization

for computing the control map and resampling the points via an error diffusion pro-

cess. Finally, the points are mapped from the area-preserving parameterization to

the conformal one and are connected using the Delaunay triangulation.

The above remeshing modification has one drawback: it requires two parameter-

izations, conformal and area-preserving. However since our low-stretch parameteri-

zation Uopt has nice area-preserving properties and the initial Floater’s parameter-

A moving mesh approach to stretch-minimizing mesh parameterization 9

ization U0 is close to a conformal one, we use Uopt and U0 instead of the conformal

and area-preserving parameterizations in the above modification of the interactive

geometry remeshing scheme of Alliez et al.

The right images of rows (a)-(c) of Figures 6-8 demonstrate results of the single-

parameterization remeshing scheme if the discrete harmonic map parameterization
7, Floater’s shape preserving parameterization 8, and intrinsic discrete conformal

parameterization are used, respectively. The right images of rows (d)-(f) of Figures

6-8 present our experiments with the double-parameterization remeshing scheme.

We set Floater’s parameterization U0 as a substitute of a conformal parameteriza-

tion and used U0 as an initial parameterization to generate the stretch-minimizing

parameterization of Sander et al. 21 and U1 and Uopt. These low-stretch parameter-

izations were used as substitutes of an area-preserving parameterization. Figure 10

presents remeshed Max-Planck bust and Stanford bunny models obtained by the

remeshing schemes based on (from left to right)
{

U0
}

,
{

U0,U1
}

, and
{

U0,Uopt
}

parameterizations. Here using {U ′,U ′′} parameterizations means that we use U ′

as a substitute of a conformal parameterization and U ′′ as a substitute of an area

preserving one. Notice that the double-parameterization remeshing scheme with
{

U0,Uopt
}

yields the best results.

4. Discussion

The final result of our mesh optimization method depends on the choice of initial

weights
{

u0
i

}

. In particular we found out that selecting Floater’s shape preserving

weights 8 leads to a very effective stretch minimization procedure. Even better

results are often obtained if the so-called cotangent weights 6 are used for generating

the initial parameterization U0. However since cotangent weights are not necessary

positive, using them may generate triangle flips.

One interesting situation when the choice of shape preserving weights is not

very appropriate consists of parameterizing meshes with multiple boundaries, see

the left image of Figure3 for such a mesh topologically equivalent to a sphere with

holes. One solution to create a good initial parameterization of such a mesh consists

of the following. Let us choose one hole (the biggest one) as the outer hole and the

remaining holes as inner holes. Let us triangulate the inner holes and then use

the shape preserving weights. Alternatively, for each edge [xi,xj] of an inner hole,

according to the right image of Figure3, we can compute angles needed to generate

either the mean value weights 9

tan(θij/2) + tan(φij/2)

|xi − xj |

or cotangent weights

cot(αij) + cot(βij)

and use either of these sets of weights for generating the initial parameterization

U0.

10 Shin Yoshizawa, Alexander Belyaev, Hans-Peter Seidel

Inner Boundary

α

x
xj

i

θij
ij

βij

φij

Fig. 3. Left: a mesh with multiple boundaries. Right: the angles needed to define the cotangent

and mean value weights for boundary vertices.

Fig. 4. Left: the cotangent (harmonic) weights are used to generate U0; stretch L2 error = 1.495,

stretch L∞ error = 360.4. Right: Uopt = U1; stretch L2 error = 1.178, stretch L∞ error = 20.13.

Fig. 5. Left: the mean value weights are used to generate U0; stretch L2 error = 1.395, stretch

L∞ error = 172.7. Right: Uopt = U1; stretch L2 error = 1.181, stretch L∞ error = 21.37.

This technique as well as the virtual boundary method of Lee et al 13 is devel-

oped for dealing with mesh parameterizations defined over non-convex parameter

domains. In contrast to 13 our approach is especially designed for processing meshes

with holes. The use of the virtual boundary method 13 for meshes with holes would

require a nontrivial hole filling procedure (see, for example, 16) as a preprocessing

step.

Figures 4 and 5 demonstrate the power of this our technique and show param-

eterizations U0 and Uopt obtained for the Car model.

5. Conclusion

We have presented a fast and powerful method for generating low-stretch mesh

parameterizations and demonstrate its applicability to high quality texture mapping

and remeshing. Our method is much faster than the stochastic stretch minimization

A moving mesh approach to stretch-minimizing mesh parameterization 11

procedure of Sander et al. 21 (note that their more recent coarse-to-fine stretch

optimization procedure 20 is significantly faster than that of 21 but still slower than

ours) and often produces better quality results. In particular, it does not generate

parameter cracks.

Our approach is heuristic. Although it has much in common with mesh moving

techniques widely used in computational mechanics and often justified mathemati-

cally, at present we are not able to support our approach by rigorous mathematical

results. In future we would be glad to justify the effectiveness of our approach

rigorously.

Acknowledgments

The authors would like to thank Hugues Hoppe for a helpful discussion and the

anonymous reviewers of this paper for their valuable and constructive comments.

The models are courtesy of the Stanford University (bunny and dragon), the Uni-

versity of Washington (mannequin head and fish), Cyberware Inc. (Igea), and MPI

für Informatik (Max-Planck bust).

References

1. P. Alliez, M. Meyer, and M. Desbrun. Interactive geometry remeshing. In Proceedings

of ACM SIGGRAPH 2002, pages 347–354, 2002.
2. Babuuska and Rheiboldt. A posteriori error estimates for the finite element method.

Int. J. Numer. Meth. Eng., 12:1597–1615, 1978.
3. L. Balmelli, G. Taubin, and F. Bernardini. Space-optimized texture maps. In Pro-

ceedings of EUROGRAPHICS 2002, pages 411–420, 2002.
4. W. Cao, W. Huang, and R. D. Russell. Approaches for generating moving adaptive

meshes: location versus velocity. Appl. Numer. Math., 47:121–138, 2003.
5. C. De Boor. Good approximation by splines with variable knots ii. In Conference on

the Numerical Solution of Differential Equations, Lecture Notes in Mathematics. No.

363, pages 12–20, 1973.
6. M. Desbrun, M. Meyer, and P. Alliez. Intrinsic parameterizations of surface meshes.

In Proceedings of EUROGRAPHICS 2002, pages 209–218, 2002.
7. M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzl. Mul-

tiresolution analysis of arbitrary meshes. In Proceedings of ACM SIGGRAPH 1995,
pages 173–182, 1995.

8. M. S. Floater. Parametrization and smooth approximation of surface triangulations.
Computer Aided Geometric Design, 14(3):231–250, 1997.

9. M. S. Floater. Mean value coordinates. Computer Aided Geometric Design, 20(1):19–
27, 2003.

10. M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey. In
Multiresolution in Geometric Modelling, pages 157–186, 2004.

11. X. Gu and S.-T. Yau. Global conformal surface parameterization. In Proceedings of

Eurographics Symposium on Geometry Processing 2003, pages 135–146, 2003.
12. S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and M. Halle. Confor-

mal surface parameterization for texture mapping. IEEE Transactions on Visualiza-

tion and Computer Graphics, 6(2):181–189, 2000.
13. Y. Lee, H. S. Kim, and S. Lee. Mesh parameterization with a virtual boundary.

Computers and Graphics, 26(5):677–686, 2002.

12 Shin Yoshizawa, Alexander Belyaev, Hans-Peter Seidel

14. B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal maps for
automatic texture atlas generations. In Proceedings of ACM SIGGRAPH 2002, pages
362–371, 2002.

15. R. Li, T. Tang, and P. Zhang. Moving mesh methods in multiple dimensions based
on harmonic maps. Journal of Computational Physics, 170:562–588, 2001.

16. P. Liepa. Filling holes in meshes. In Proceedings of Eurographics Symposium on Ge-

ometry Processing 2003, pages 200–205, 2003.
17. J. Maillot, H. Yahia, and A. Verroust. Interactive texture mapping. In Proceedings of

ACM SIGGRAPH 1993, pages 27–34, 1993.
18. E. Praun and H. Hoppe. Spherical parametrization and remeshing. In Proceedings of

ACM SIGGRAPH 2003, pages 340–349, 2003.
19. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Re-

cipies in C. Cambridge University Press, 1988.
20. P. V. Sander, S. J. Gortler, J. Snyder, and H. Hoppe. Signal-specialized parametriza-

tion. In Proceedings of Eurographics Workshop on Rendering 2002, pages 87–98, 2002.
21. P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe. Texture mapping progressive

meshes. In Proceedings of ACM SIGGRAPH 2001, pages 409–416, 2001.
22. A. Sheffer and E. de Sturler. Smoothing an overlay grid to minimize linear distortion

in texture mapping. ACM Transactions on Graphics, 21(4):874–890, 2002.
23. O. Sorkine, D. Cohen-Or, R. Goldenthal, and D. Lischinski. Bounded-distortion piece-

wise mesh parameterization. In Proceedings of IEEE Visualization, pages 355–362,
2002.

24. A. M. Winslow. Numerical solution of the quasilinear poisson equation in a nonuni-
form. J. Comput. Phys., 2:149–172, 1967.

25. S. Yoshizawa, A. Belyaev, and H.-P. Seidel. A fast and simple stretch-minimizing
mesh parameterization. In Proceedings of Shape Modeling International 2004, pages
200–208, 2004.

26. R. Zayer, C. Rössl, and H.-P. Seidel. Discrete tensorial quasi-harmonic maps. In Shape

Modeling International 2005, 2005.
27. E. Zhang, K. Mischaikow, and G. Turk. Feature-based surface parameterization and

texture mapping. ACM Transactions on Graphics, 24(1):1–27, 2005.

A moving mesh approach to stretch-minimizing mesh parameterization 13

time Stretch Edge Angle Area
(a) 0.06 s 6.6507 0.9918 0.125 1.4032
(b) 0.06 s 5.9171 0.9635 0.1995 1.3801
(c) 0.12 s 6.2751 0.9778 0.1619 1.3931
(d) 80.91 s 1.375 0.5162 0.2952 0.5232
(e) 0.08 s 1.6691 0.5084 0.3717 0.8836
(f3) 0.16 s 1.4084 0.4814 0.4479 0.4165

Table 1. Mannequin Head model: V = 689, F =

1355

time Stretch Edge Angle Area
(a) 0.21 s 1.9708 0.4935 0.0969 0.8455
(b) 0.17 s 1.8084 0.4648 0.1568 0.8409
(c) 0.33 s 1.8511 0.4753 0.1189 0.84
(d) 213 s 1.172 0.2996 0.2239 0.3043
(e=f1) 0.3 s 1.2057 0.2862 0.2881 0.3179

Table 2. Cat Head model: V = 1856, F = 3660

time Stretch Edge Angle Area
(a) 0.37 s 6.6617 0.9971 0.0685 1.4036
(b) 0.32 s 5.7921 0.9599 0.1807 1.3733
(c) 0.76 s 6.1295 0.9784 0.1209 1.3886
(d) 23m 1.3279 0.5393 0.2744 0.4956
(e) 0.5 s 1.6425 0.5073 0.3838 0.8717
(f3) 1.09 s 1.382 0.4748 0.4132 0.3832

Table 3. Refined Mannequin Head model: V =
2732, F = 5420

time Stretch Edge Angle Area
(a) 1.23 s 13.306 0.7563 0.1041 1.0207
(b) 0.87 s 11.729 0.6976 0.2545 0.9526
(c) 1.81 s 12.266 0.7232 0.176 0.9795
(d) 1h 1.3408 0.4955 0.3477 0.4227
(e) 1.5 s 1.7643 0.4551 0.3735 0.4676
(f3) 3.44 s 1.4791 0.4661 0.5226 0.3613

Table 4. Cat model: V = 5649, F = 11168

time Stretch Edge Angle Area
(a) 3.16 s 18.027 1.2288 0.0361 1.692
(b) 2.29 s 15.941 1.2074 0.1441 1.6373
(c) 17.4 s 16.933 1.2157 0.0857 1.6618
(d) 57.5h 1.3257 0.7021 0.2501 0.5436
(e) 4.18 s 2.2037 0.6249 0.372 1.1899
(f3) 9.22 s 1.5392 0.5623 0.4905 0.6217

Table 5. Decimated Max-Planck bust model:
V = 9462, F = 18866

time Stretch Edge Angle Area
(a) 12.9 s 1.5348 0.3025 0.1313 0.5063
(b) 6.21 s 1.485 0.3412 0.1748 0.5651
(c) 25.8 s 43.947 0.7602 0.3622 1.0085
(d) 4.5h 1.2226 0.2833 0.1934 0.4338
(e) 17.9 s 1.2105 0.2477 0.2112 0.3876
(f3) 42.6 s 1.1718 0.24 0.2636 0.2375

Table 6. Fandisk model: V = 9919, F = 19617

time Stretch Edge Angle Area
(a) 5.55 s 9179549 1.6037 0.0915 1.7599
(b) 4.24 s 1120318 1.5049 0.3491 1.7175
(c) 21.1 s 231989 1.5494 0.2707 1.7387
(d) 39.7h 7635.3 1.1442 0.3544 0.8435
(e) 6.99 s 313.64 0.9883 0.6341 1.4739
(f8) 33.2 s 3.5688 0.8522 0.8253 0.7897

Table 7. Half-of-Dragon model: V = 13927, F =

27782

time Stretch Edge Angle Area
(a) 12.4 s 9462.1 0.9729 0.0704 1.5132
(b) 8.95 s 181.05 0.9983 0.3852 1.5725
(c) 90.7 s 320.53 0.9845 0.2281 1.5425
(d) 43.4h 1.6816 0.7193 0.2917 0.6665
(e) 14.7 s 3.3929 0.5041 0.6184 0.8078
(f3) 32.3 s 2.884 0.6399 0.7747 0.5344

Table 8. Dragon Head model: V = 23929, F =
47783

time Stretch Edge Angle Area
(a) 11.2 s 3.4799 0.7924 0.0542 1.3399
(b) 8.46 s 4.676 0.8678 0.1627 1.3664
(c) 93.8 s 34.621 0.8104 0.1831 1.3525
(d) 18.6h 1.3092 0.4603 0.2265 0.5492
(e) 15.2 s 1.4373 0.4166 0.3446 0.6868
(f2) 27.2 s 1.304 0.385 0.3923 0.4123

Table 9. Igea model: V = 24720, F = 49301

time Stretch Edge Angle Area
(a) 17.9 s 712.33 0.7097 0.0797 1.098
(b) 13.2 s 85.181 0.7241 0.1522 1.0861
(c) 231 s 672.45 0.7062 0.2866 1.0957
(d) 55.6h 1.5159 0.4982 0.3109 0.4868
(e) 22.5 s 4.7926 0.4582 0.387 0.5632
(f6) 79.8 s 1.8755 0.6143 0.6065 0.5241

Table 10. Stanford Bunny model: V = 31272,

F = 62247

time Stretch Edge Angle Area
(a) 92.4 s 6.3061 0.8241 0.0445 1.3021
(b) 66.3 s 6.092 0.7752 0.1782 1.2613
(c′) 486 s 6.306 0.8241 0.0445 1.3021
(d) 120h 2.5689 0.6481 0.2444 0.926
(e) 125 s 1.5683 0.4252 0.3476 0.6387
(f2) 206 s 1.5041 0.4414 0.4678 0.3946

Table 11. Fish model: V = 64982, F = 129664

time Stretch Edge Angle Area
(a) 250 s 18.207 1.2578 0.03 1.6936
(b) 204 s 18.1025 1.25 0.0512 1.6912
(c) 52.1m 2.8434 1.2341 0.3068 1.6924
(e) 384 s 2.2094 0.6598 0.3698 1.2017
(f3) 848 s 1.4926 0.5939 0.4865 0.4812

Table 12. Max-Planck bust model: V = 199169,

F = 398043

14 Shin Yoshizawa, Alexander Belyaev, Hans-Peter Seidel

Parameterization Curvature Map Texture Mapping Parameter Cracks? Remeshing 1

(a) Harmonic map of Eck et al. 7:

time 0.37 s, Stretch: 6.661, Edge: 0.997, Angle: 0.068, Area: 1.403

(b) Floater shape preserving weights 8:

time 0.32 s, Stretch: 5.792, Edge: 0.959, Angle: 0.18, Area: 1.373

(c) Intrinsic parameterization of Desbrun et al. 6:

time 0.76 s, Stretch: 6.129, Edge: 0.978, Angle: 0.12, Area: 1.388

(d) Stretch minimization of Sander et al. 21:

time 23 m, Stretch: 1.327, Edge: 0.539, Angle: 0.274, Area: 0.495

(e) Our U1 parameterization:

time 0.5 s, Stretch: 1.642, Edge: 0.507, Angle: 0.383, Area: 0.871

(f) Our Uopt = U3 parameterization:

time 1.09 s, Stretch: 1.382, Edge: 0.4748, Angle: 0.4132, Area: 0.3832

Fig. 6. Comparison of various mesh parameterization schemes on the Mannequin Head model

(V = 2732, F = 5420).

A moving mesh approach to stretch-minimizing mesh parameterization 15

Parameterization Curvature Map Texture Mapping Parameter Cracks? Remeshing 1

(a) Harmonic map of Eck et al. 7:

time 1.23s, Stretch: 13.3, Edge: 0.756, Angle: 0.104, Area: 1.02

(b) Floater shape preserving weights 8:

time 0.87s, Stretch: 11.72, Edge: 0.697, Angle: 0.254, Area: 0.952

(c) Intrinsic parameterization of Desbrun et al. 6:

time 1.81s, Stretch: 12.26, Edge: 0.723, Angle: 0.176, Area: 0.979

(d) Stretch minimization of Sander et al. 21:

time 1h, Stretch: 1.34, Edge: 0.495, Angle: 0.347, Area: 0.422

(e) Our U1 parameterization:

time 1.5s, Stretch: 1.764, Edge: 0.455, Angle: 0.373, Area: 0.467

(f) Our Uopt = U3 parameterization:

time 3.44s, Stretch: 1.479, Edge: 0.466, Angle: 0.522, Area: 0.361

Fig. 7. Comparison of various mesh parameterization schemes on the Cat model (V = 5649,

F = 11168).

16 Shin Yoshizawa, Alexander Belyaev, Hans-Peter Seidel

Parameterization Curvature Map Texture Mapping Parameter Cracks? Remeshing 1

(a) Harmonic map of Eck et al. 7:

time 3.16s, Stretch: 18.02, Edge: 1.228, Angle: 0.036, Area: 1.692

(b) Floater shape preserving weights 8:

time 2.29s, Stretch: 15.94, Edge: 1.207, Angle: 0.144, Area: 1.637

(c) Intrinsic parameterization of Desbrun et al. 6:

time 17.4s, Stretch: 16.93, Edge: 1.215, Angle: 0.085, Area: 1.661

(d) Stretch minimization of Sander et al. 21:

time 57.5h, Stretch: 1.325, Edge: 0.702, Angle: 0.25, Area: 0.543

(e) Our U1 parameterization:

time 4.18s, Stretch: 2.203, Edge: 0.624, Angle: 0.372, Area: 1.189

(f) Our Uopt = U3 parameterization:

time 9.22s, Stretch: 1.539, Edge: 0.562, Angle: 0.49, Area: 0.621

Fig. 8. Comparison of various mesh parameterization schemes on the decimated Max-Planck bust

model (V = 9462, F = 18866).

A moving mesh approach to stretch-minimizing mesh parameterization 17

Fig. 9. Choosing smaller values for η leads to a less aggressive stretch minimization. From left to

right: U1 parameterization of Mannequin Head with η = {0, 0.1, 0.2, 0.4, 0.6, 0.8, 1}.

Fig. 10. Remeshing of Max-Planck bust model (three left images) and Stanford bunny (three right
images) models. For each model remeshings according to U0,

˘

U0,U1
¯

, and
˘

U0,Uopt
¯

are shown.

See the text for details.

Fig. 11. Parameter cracks on various models textured with checkerboard texture. The images of

the upper row demonstrate parameter cracks generated by the stretch-minimization method of
Sander et al. The images of the bottom row show the same parts of the models parameterized by

our Uopt.

U
opt = U

5 with circular parameter domain.

Time: 1.51 s, Stretch: 1.34, Edge: 0.43,

Angle: 0.47, Area: 0.4.

U
opt = U

1 with natural boundary 6.

Time:1.67 s, Stretch: 1.68, Edge: 0.5, Angle:

0.37, Area: 0.9.

Fig. 12. Using various parameter domains for Uopt.

18 Shin Yoshizawa, Alexander Belyaev, Hans-Peter Seidel

Fig. 13. Checkerboard texture mapping with U0

(left), U1 (middle), and Uopt (right).

U0 U1

Min:0.17 Ave:11.12 Max:37.96

U1 Uopt

Min:0.21 Ave:2.11 Max:4.51

Fig. 14. Top row: a decimated Max-Planck bust

model and results of checkerboard texture map-
ping with U0, U1, and Uopt parameterizations.

The four remaining images of the model show
the distribution of the vertex stretches over the

model for U0, U1, and Uopt. Firstly coloring by

stretch σ ∈ [0.17, 37.96] is used to compare U0

and U1. Then the same coloring scheme on the
stretch interval [0.21, 4.51] is employed to com-

pare the stretch distributions for U1, and Uopt.

Here the bounds of the interval are equal to the

maximal and minimal stretch values.

