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We propose a novel approach to 3D image registration of ieliar volumes. The approach ex-
tends a standard image registration framework to the curdedexametry. An intracellular volume is
mapped onto another intracellular domain by using two paipooft set surfaces approximating their
nuclear and plasma membranes. The mapping function considie affine transformation, tetrahe-
dral barycentric interpolation, and least-squares fortrneaof radial basis functions for extracted cell
geometry features. An interactive volume registration sgsgealso developed based on our approach.
We demonstrate that our approach is capable to create cellsram®aining multiple organelles from
observed data of living cells.
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1. Introduction

Recent advances in live cell imaging make it possible to esthe organellésin living

cells as 3D images. Quantitative analysis of siattacellular volumesas thus become im-
portant in cell biology [10]. Also numerical simulationsdeal on the intracellular volumes
are becoming popular in recent biophysics and systemsdyioltherefore, constructing

a|n this paper, we use a word ofganellefor objects in living cells such as organelles, cytoskelstoesicles,
etc. for the sake of simplicity.
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the cell shape models which include multiple organellarctrres has considerable atten-
tions in order to simulate intracellular events realidticdntracellular volumes are usually
determined under a confocal laser microscope with fluoresrganellar markers. Unfor-
tunately, simultaneous observation of many different #isoent markers is not possible
because of technical difficulties with microscopes, fluoees markers, and cell conditions
([4,14], and references therein). Only one or two fluoreso®arkers are usually employed
in cell biology experiments to avoid the problems causechbygiasing markers.
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Fig. 1. Intracellular volume registration flowchart.

Our approach. In this papet, we propose a novel approachittracellular volume reg-
istration (the non-rigid alignment of separately observed 3D imadekendifferent intra-
cellular objects) as an alternative solution to overconthrg difficulties of simultaneous
observation. The main idea behind the approach is to cartgtrfuinction that maps one in-
tracellular domain to another by using the geometric fegpaints extracted from the cell’s
nuclear and plasma membranes. Figure 1 illustrates a flatwohaur approach. First, we
observe the cytoplasm together with its nucleus as a referesiume, and simultaneously
the objective organelle as its corresponding target volurhe cytoplasm and nucleus are
chosen because their topological configuration duringphtese, that of a sphere envelop-

blt is an extension of our previous work [42]. The main differerfrom [42] includes the improvements in
our least-squares RBF formulation with self-intersectiamirfig in addition to more detailed description of the
proposed approach.
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ing another sphere, is simple. Then these regions are ésbfadm their backgrounds to
produce segmented reference volumes. Next, the nuclegplastha membranes are ap-
proximated by a pair of point set surfaces sampled on thed=aiss of the isolated regions,
and their geometric features are extracted. Next, a magpiion between a pair of ref-
erence volumes is constructed by applying affine transfoomatetrahedral barycentric
interpolation, and least-squares radial basis functi@R)Ritting methods to the extracted
features. Finally, the constructed mapping function isliagpto one of the reference and
its corresponding target volumes.

Contribution and benefit. The goal of this study was to generate a numerical cell model
including multiple organelles that represents living ealiclose as possible. Such a model
is useful for presenting combined organellar informatiomiblogists and for running nu-
merical cell simulations. Our approach is capable of irg8gg individually observed intra-
cellular objects, as demonstrated in Section 5. The stuelygmts a new approach to over-
coming the difficulties of simultaneous observation of mdifferent fluorescent markers.
Its technical contribution includes an interactive ingthdar volume registration system,
adapting the least-squares RBF to cell geometry, and a nwtlod for extracting cell ge-
ometry features; this method semi-automatically providesure point correspondences.

Paper organization. The rest of paper is organized as follows. Section 2 briefscdbes
previous work on image registration. We present how to segmeéerence and target vol-
umes in Section 3. Section 4 describes the cell geometrgtragon technique. Our nu-
merical experiments are explained in Section 5. We condluelpaper in Section 6.

2. Previous Work on Image Registration

Image registration is popular and well-studied in compuision and image processing
communities [12, 18, 22]; see [44, 45], and references thdoe general image registra-
tion technigues. The high-dimensional extensions of sechriques are often used in
bio-medical image processing [23, 34, 35] to merge CT, MRY anicroscopic images.
Non-rigid transformations are necessary for such bio-psdiata because of the complex
curved geometry of the objects of study. In particular,itradal RBF fitting methods have
been used for non-rigid registration [11, 33, 36] and mafeotasks. On the other hand,
non-rigid transformations for intracellular volumes had been studied until very recently
[20,24,41] because the objects in living cells are usuallysolid; they are also both topo-
logically and geometrically complex and vary with time. Téfere, intracellular volume
registration is a difficult problem, but it is a promising easch subject because of rapid
advances in live-cell-imaging technology.

Mattes et al. employed a thin-plate spline transformatiadeh with landmarks for
their 2D intracellular image registration [24]. Kim et atoposed a non-rigid registration
approach to intracellular volumes of different cell nu¢9]; the approach was based on
the so-called demons algorithm [38]. Yang et al. extendedapproach to segmented vol-
umes [41]. However they considered only cell nuclei, whighlike nuclear and plasma
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membranes, have a simple topological and geometrical agafign. Our approach is ca-
pable of transforming a volume domain (including orgarglleetween the nuclear and
plasma membranes, whereas the previous approaches [20] 2dnsider only the volume
domain inside the nucleus (with no organelles).

In contrast with the previous RBF techniques [11, 33, 36HuseCT and MRI image
registration, our approach employs a least-squares RBfgfithethod that is popular in
geometry processing such as surface reconstruction [80§lape editing [5].

3. Intracellular Image Segmentation

To construct a function mapping one volume onto another, igeifiolate the nuclear and
cytoplasmic regions from their backgrounds. The targeaoejar region within the cyto-
plasm is segmented for further quantitative analysispaliih the segmented target volume
is not necessary to construct the mapping function.

The intracellular volumes generated from observationgvirig cells contain noise.
Their low signal-to-noise ratio has causes, including po@roscope resolution, Brown-
ian motion, blurring, movement of organelles, and bleaghihfluorescent markers [4].
Moreover, small variations made to the observation sedtfog different organelles intro-
duce inconsistencies in the same feature among imagesn8isehand inconsistency make
it difficult to achieve high-quality segmentation of intedlalar volumes. Our segmentation
technique incorporates noise reduction methods and diugtine filtered image.

Image details are important in isolating organelles forative analysis. On the other
hand, image smoothness and robustness to small perturbatie required for segmenting
the nucleus and cytoplasm in order to construct a good mggpirction. Therefore, we use
two image denoising filters for the targets (organelles)theit corresponding references
(cytoplasm and nucleus): Non-Local Means (NL-Means) [6]thrgets and the Block-
Median Pyramidal Transform (BMPT) [28] for the referencBSIPT filter is an exten-
sion of the pyramidal median transform [21] which was depetbin astronomical image
analysis in order to isolating global regions of variousntinating points [37]. Since the
nuclear and cytoplasmic regions also consist of such ithatimg points representing sets
of fluorescent proteins, the BMPT filter was chosen to prodiicely smoothed volumes.
The multiresolution strategy of BMPT provides robustne@sscbnstructing our mapping
function. NL-Means filter preserves detail while reducirajse, and often used in image
segmentation [1, 13, 19]. Figure 2 shows advantages of thelitvo different filtering
schemes in our segmentation technique.

After the filters are applied, the organellar, cytoplasmigglear, and background re-
gions are segmented by unsupervised K-means clusterijgd@the filtered image in-
tensities. Finally, the unwanted isolated regions arelégband merged to reproduce the
topological configuration of cytoplasm and nucleus. Fidliidustrates the isolation of the
nucleus and cytoplasm from their backgrounds.

Image segmentation has been one of the most intensive fiektady in image pro-
cessing and computer vision [1, 17, 25, 43]. The conventisagmentation methods of
intracellular images [8,9, 16, 26] have been mainly desigoedentify the entire cytoplas-
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Fig. 2. Noise robust and detail-preserving segmentatioefs: BMPT filtering of a 2D image (top) and segmen-
tation of a reference volume (bottom, microtubule’s cytoplasm nucleus). Right: NL-Means filtering of a MRI
volume (top) and segmentation of a target volume (bottom, mibriéis).

Input Images Segmented Images

k.*'*".*.

BMPT [Resize — Median — Resampling] —- K-Means & Merge

Fig. 3. Segmentation of cytoplasm and nucleus.

Fig.4. Segmented intracellular volumes by our technique:ahitules (left), actin filaments (center), and Golgi
apparatus (right). In this research, we assessed theyjabtiegmentation by visual inspection of cell biologists.

mic or nuclear regions. Unfortunately, applying these roé#to our reference volumes is
not straightforward. For example, a great amount of trgmata set for machine learning
[16], the user specified initial segmentation [26], extegdihe method of [8] to 3D, and
some optimization method to place the source and sink pasitf graph cut algorithm [9]
are required in order to use these methods in our purposeh®ather hand, our simple
multiresolution strategy provides us satisfactory ressat demonstrated in Figures 3 and
4. In addition, our technique is applicable to a more widegyeaof organellar volumes.
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4. Cell Geometry Registration

Our registration technique is based on extending a standeage registration framework
summarized by Zito& et al. [45] to the curved cell geometry (Fig. 5). Our techieigvorks
as follows. First, the geometric features of each refereobt@me are extracted automati-
cally. Next, a mapping functiofi : (u,v,w) — (z,y, z) between two different intracellular
domains(u, v, w) € Qq and(z,y, z) € Qs is constructed by using the extracted features
of a pair of reference volumes. In this mapping constructibase, the affine transforma-
tion and tetrahedral barycentric interpolation are emgibip align the reference volumes
roughly, and then the least-squares RBF provides the firtalldé mapping. The choice
of the mapping methods and adjustments of the extractedrématire interactively per-
formed by a user in our technique. Next, one of the targetrmigr volumes is mapped
onto another target domain via the constructed mappingifimwith resampling. We use
the inverse mapping with resampling (nearest neighbor @wadibic interpolation) which
is a common method to obtain transformed images in imageepsig [15, Sect. 2.6.5].
Finally, the resampled volume is integrated to anothermeluThe following subsections
describe the methods in our technique.

Standard Image Registration
# Transform Model M Transformation

-P‘ Feature Detection H Feature Matching Estimation & Resampling =

=» Cell Geometry Feature Analysis Mapping =»  Inverse Volume =>
Construction Mapping & Resampling|
R: Reference, T: Target,
RF: Reference Features, erJ < RJ
mrR,mrT: Mapped & Resampled N B T
Reference and Target Mapping: f(x) f ](X) J
Cell Geometry Registration A | it necessary,

Fig.5. Ourtechnique inherits the framework of [45] consigtdf four steps: feature detection, feature matching,
transform model estimation, and transformation and resampling

4.1. Cell Geometry Feature Analysis

Consider a given pair of plasma membranes represented Ipotheset surfaced; and
02, which live in domaing2; and2,, respectively. Let; andcs be the centers of gravity
of 91 ando,. Principal Component Analysis (PCA) 6f andd, gives us the pair of corre-
sponding principal axeft1, t3, t1} and{t?, t3,t2}. The same computations are applied to
the corresponding nuclear membranes. Then the followiatufe and sub-feature points
are extracted for the two pairs of nuclear and plasma merabrdaur point set surfaces).

Let 9, ¢, and{t;, t2, t3} be one of the point set surfaces, its center of gravity, and it
principal axes, respectively. Assume thatis the longest PCA direction af, andts is
perpendicular to the cell face on the cover-glagsiflane). If the calculatet} is far from
being a normal vector of they-plane, we compute; andt, by averaging 2D PCA axes
of 0's contour curves instead of the 3D PCA axes. The contouresuowno are obtained by
extracting sectional curves along thexis. Thents is obtained by a cross product tof
andt..
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We consider three feature point sets sampledas shown in the images (a), (b),
and (c) of Figure 6. The three sets, in which consist of the tsienty six, and eleven
feature points, are located on each of nuclear and plasmaraess. The feature points
are obtained by calculating intersectionsgofvith the rays (half-lines) frone. The first
two sets (a,b) are easily calculated from the PCA direct{sisrays) and their bisectors
of adjacent PCA directions (twenty six rays). The last spigspecialized to a triangle-
patterned cell shape. We employed a triangle micro-pattesubstrate in our live-cell-
imaging experiments, because it reduces complexity of¢his plasma membrane shape.
Their corresponding eleven rays in (c) are parallelt, 5, x(t1), £t23 + x(t1), and
X(£t2 —t1), wherex(t) = (argmax., < x —c,t >) — c. Here the vector functiog(t)
gives us the farthest direction with respect to a given vegtand the multiple sub-index
t; ; corresponds to; andt;. The sub-feature points are sampled on the geodesics betwee
the feature points oé.

Note that the correspondences between two sets of featints pond; ando; are auto-
matically obtained by specifying the correspondence oP@a directions{t}, t3, t1} and
{t2,t3, tZ}, because the feature points (also sub-feature pointsptomatically generated
after the PCA directions are obtained. This semi-autontativespondence generation re-
duces a lot of manual registration, and it gives us an inidind interactive user interface,
as shown in Figures 6 (a,b,c) and 12. Moreover, these feptings are useful to generate
the RBF centers used in our RBF fitting method as shown in Eigyd).

B @ B

(@) (b) (©) (d)
Fig. 6. (a,b,c): extracted feature and sub-feature poiaseth on PCA of nuclear (bottom) and plasma (top)
membranes. (d): automatic RBF center generation by using theceed features with two bounding boxes of the
cytoplasm and nucleus.

4.2. Affine Transformation with PCA

When the shapes of two pairs of nuclear and plasma membramesralar to each other,
the global mapping models [45] are the simplest way to oljte@per registration results.
Once the PCA directions are obtained, constructing onesofrtbst frequently used global
mapping model to the curved cell geometry is as follows. Tifireatransformationf (x),
which transforms a point € 0, to the domair2,, is automatically constructed via PCAs
of 0, andds:

f(x) =A(x—ci)+c2, A= (t],t3,t3)(t],t3,¢5) "
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In addition, our technique allows a user to manually spegiforresponding pair of four
points on the plasma membrane surfaces (Fig. 7) for the afineformation.

« )\

(a) (b) (€) (d)
Fig. 7. A manual registration example via affine transformatigih a pair of four points. (a,c): the pair of
four points on the plasma membrane surfaces. (b): the pointigeces approximating the nuclear and plasma
membranes. (d): the affine transformed point set surfaceseipatn of four points shown in (a) and (c).

4.3. Tetrahedral Barycentric Interpolation

Barycentric interpolation and its extensions are usefuioton a mapping between two
polyhedra, because they have many properties desirabke fiature-preserving interpo-
lation [3]. In our case, valid tetrahedrization can be agplio the bounding boxes of the
cytoplasm and nucleus without any degeneration of a tedrahebecause of its topological
configuration such as a sphere enveloping another spheyed{Fi

(d) (e) ®
Fig. 8. Tetrahedrizations and their barycentric interpola (a): the cytoplasmic and nuclear bounding boxes
and its corresponding tetrahedrization (b). (d,e): thatmet surfaces of (b) and another volume (c), respectively.
(f): the interpolated point set surfaces via the tetralzadions of (b) and (c) with their barycentric coordinates.

Six hexahedra are generated by connecting the corresgpoatiners of the nuclear and
cytoplasmic bounding boxes. The tetrahedrization camsisseven hexahedra (the gener-
ated six plus the nucleus bounding box), each of which ctmefdwenty four tetrahedra.
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The tetrahedra in each hexahedron are generated by addaigtagpthe hexahedron cen-
ter and six points to its face centers, and then connectigptpoints with the hexahedron
vertices.

The mapping function between a pair of tetrahedrizatior@;imnd(2, is constructed
by a set of tetrahedral barycentric interpolations. Thation of a point inside of the tetra-
hedron is given by the volume ratio of four tetrahedra as aggization of 2D triangle
barycentric coordinates.

4.4. Least-Squares RBF Fitting

The following RBF fitting scheme is employed in our technigquerder to handle locally
deformed volumes which are difficult to obtain appropriggistration results by the affine
transformation and tetrahedral barycentric interpotatieethods.

For a given pair of point sets; }1*_; € ; and{y;}?; € Q2 which represents a pair
of the reference volumes, we would like to find a vector-vdlfnctiony = f(x) such
that f (xx) = yx. The solution by a standard RBF is given by

foO =960+ Nellx—x;), & eR?, 1)

Jj=1

where\ = {\;}"_, are the RBF coefficients andx) is a low degree trivariate polynomial
depending on the choice ¢f(-). For examplep(-) = | - | and(-) = | - |* with the lin-
ear and quadratic polynomials in (1) correspond to the bilbaic and triharmonic RBFs,
respectively. The interpolatiofi(x) = y and orthogonalityy~"_, A;x; = >, A; = 0
conditions lead a linear system

<§T§> (;) - (}()),)’ i =o(xi —x5]), Qi = Q;(xs),

whereg = {g}._, are the coefficients ofi(x) and Qx(x;) is a basis ofg(x;) which
corresponds tgy.

To fit the RBF robustly, we use the following least-squares-R3mulation. Consider
the so-called RBF cente¢s= {¢; }7-,, which consist of one of the feature point set§in
and the bounding box vertices of the cytoplasm and nuclegs§F(d)). Letp = {p;}} ;
be a set of feature and sub-feature points of the cytoplashmacieus irf2; (two point set
surfaces) and lef = {q;}?_, be the corresponding set of feature and sub-feature paints i
Q5. Then, the LS-RBF is given by

FE) =gx)+ ) No(x—&), NeR,  n>m,
j=1

where we usep(u) = »? and a linear polynomial foy(x). The polynomial and RBF
coefficientsh = {\;}72; andg = (g1, g2, g3, g4) are obtained by solving a least-squares
system of linear equations

(A g)" = (ATA)"'AT(q,0)". )
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Here the rectangular matriX is composed by satisfying the following interpolation and
orthogonality conditionsf(p) = q and> 7., ;& = 7L, A; = 0. Thus we have

Py Pip -+ Pipy 1 p7 pY pf

0} d q)ml T Y 2
pom T R ®i; = o(Ipi — &),
A = (I)nl(an(I)nmlprp%pr , C_(eT Y gz
1 1 --- 1 000 0O 61 (z? 7,751,)7
& & - § 0000
Vg &, 0000 pi = (07,0}, pj).
& & - &, 0000

The resulting RBF is the so-called pseudo-cubic functio®].[Since the RBF may
generate space folding (Fig. 9), the linear regression RBBErse [7,31] is used as

(ATA) = (a3 (g g ) + (A7)

to reduce self-intersections, whdrés amxm identity matrix,3 is an absolute maximum
value of a diagonal element sub§éA” A);;}™ |, and« is a user-specified smoothness
parameter. Figure 10 demonstrates the self-intersediand results with varyingy.

Fig. 9. 2D examples of foldover via the RBF. We can see spadafpfrom the left to right images.

P = # --;;;"-—‘ y ‘“ES-:_ ;
(; v{r,..\J = : ) S e -
a >
Q\.Lj,"}\ C
NS
5N
a 0.0 1078 9x 1078 6.1 x 104

Fig. 10. Self-intersection fairing by the linear regressimcreasingx (left to right) interactively penalizes self-
intersections caused by LS-RBF. Top and bottom images gamneisto top and bottom views of the mapped point
set surfaces.

The equation (2) is numerically solved by using the LU decositjon [32]. Note that
we only need to decompose the+4)x(m+4) square matriXA” A) when¢ andp are
changed by user interactions. Thez-components of \, g) are obtained by separately
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applying backward substitution of each componentdf(q, 0)7 with the decomposed
matrix. The point numbers o, q, &, 0;, andd, are relatively smaller than the voxel num-
bers of reference volumes, therefore we update and visuhle point set surfaces during
the user interactions instead of constructing the mappkdna Since the backward sub-
stitution is quite fast, constructing and applying our LBMRto the point set surfaces are
sufficiently fast for interactive registration. Figure 1Hosvs the volumes and their corre-
sponding point set surfaces mapped via our LS-RBF.

(@) (b) (© (d)
Fig. 11. LS-RBF fitting with inverse mapping. (a): two pairdedture and sub-feature points on the nuclear and
plasma membranes. (b): two pairs of cytoplasm with nucleusbée)ndary point sets approximating the plasma
and nuclear membranes. (d): point sets and volume transforraetlesLS-RBFf and its inverse mapping—!.

4.5. Interactive Registration System

We have developed a computer-aided registration systesdb@s our registration tech-
nigue. The system is implemented by using Java Developmiemtith Java3D. Figure 12
illustrates a graphical user interface (GUI) of the system.

v 30 meomr )
e

Fig. 12. Interactive registration system GUI.

The system includes a 3D volume rendering window in orderigoalize input ref-
erence volumes. This 3D rendering window provides the autiare GUI to repositioning
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the feature points restricted on the nuclear and plasma maemalsurfaces of the cell (Fig.
12, right). Changes of visualization and registrationiisg#t by a user are immediately re-
flected on the 3D rendering window. Then, the system perfahmsell geometry feature
extraction method and the mapping methods described abmadly, the system updates
the 3D rendering window according to the results of the magh@his interactive system
provides intuitive registration of intracellular volumes

5. Results

In experiments, we used Hela cells cultured on a triangulera¥patterned substrate pro-
duced by the photochemical method [29] to regularize theesl living HeLa cell shapes.
A fluorescent-protein-tagged nuclear localization sighllS) plasmid was employed to
characterize the cytoplasm and nucleus. The parametehe &MPT and NL-Means for
different organelles were decided on by cell biologistspvgklected the result that they
considered to be the best approximation of the organellassing varying parameters to
filter the results. All numerical experiments were perfodno@ a Core2Duo PC (2.4 GHz,
no parallelization is used) with 8 GB RAM.

Figures 13, 14, and 15 show our registration results, in wihe resulting volumes
consist of 304x508x116 voxels. The shapes and positiomeahaipped organellar volumes
are reasonable, even though the geometric configuratiaie af/toplasm and nucleus are
complex. We examined our registration approach to twentgrspairs of the intracellular
volumes. The segmentation and registration qualities wistelly inspected by seventeen
cell biologists in terms of intracellular morphology.

The resulting volumes provide us the combined geometry asdipns of organelles
among the individually observed cells. For example, we eailyesee the relative positions
of cytoplasm, nucleus, and Golgi apparatus among varying th the bottom images of
Figure 15, whereas these relationships are not clear irothartages because of different
nuclear and plasma membrane shapes. Also 3D combined iafiomof complex intracel-
lular objects as actin filaments and microtubules shownguife 14 is difficult to imagine
without registration of them. This is an advantage over raage data and the previous in-
tracellular image registration approaches [20, 24, 34f{@rldnalyzing organellar dynamics
and functions.

Unlike the landmarks used in [24] and the image intensityedif muclei employed in
[20, 41], our approach does not depend on the target orgamvellumes explicitly. There-
fore, our registration results are much robust with respet¢bpology changes of obser-
vation targets which biologist would like to analyze. Nadtattthe techniques of [20, 41]
are not able to merge the organelles. Compared with recergemegistration techniques
[33, 35, 36], our approach is preferable for mapping intitata volumes because of our
method for extracting cell geometry features.

Our use of the point set surfaces gives us the interactivistragion rate (about 1-10
microseconds) for the computations that require user rudatipn, such as adjustments to
the corresponding points in the LS-RBF fitting, the corregtiog mapping calculations,
and visualization of the mapped point set surfaces. Thasewenlume resampling requires
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a few minutes. One intracellular volume registration taak be completed within 5-20
minutes by an experienced user with our system.

Discussion. In this research, accuracy and quality of the registratgsuits depend on vi-
sual inspections of individual cell biologists who acqditée corresponding intracellular
volumes. Unfortunately their criterions are heuristiccdngse a ground truth of organellar
shapes is not mathematically formalized in current celldgy. Thus, we used their edu-
cated guesses for validating the registration resultsuturé work, combining the machine
learning techniques [2, 40] with our approach is promisimgider to incorporate such
perceptual knowledge on organellar shapes more systathatic

Future work includes the intracellular registration dgraell division. Also implement-
ing physically-based transformations such as visco-tetpstic deformations to our regis-
tration approach is interesting, although it is difficultd@stimate physical parameters in
living cells.

6. Conclusion

In this paper, we proposed a novel approach to intracelidume registration based on
constructing a function mapping one intracellular volunmtooanother by analyzing the
geometry of the plasma and nuclear membranes. This appatiags us to integrate the
volumes of individually observed organelles, which is difft in conventional live cell
imaging. We presented three mapping methods (affine tranatmn, tetrahedral barycen-
tric interpolation, and least-squares radial basis fanditting) specialized to intracellular
volumes. The interactive intracellular volume registratsystem was also developed. Be-
sides its benefits to quantitative analysis in cell biology; approach is useful for cell
simulations based on real-world data.
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Fig. 13. Two organellar volumes (actin filaments and Golgi amjes) are combined where the corresponding
reference volumes are shown in the most left images of Figure 15.

Fig. 14. Left: the target and reference volumes of microtubu@enter: the volume of microtubules mapped
onto the actin’s reference volume. Right: the registratiesult of two organellar volumes (actin filaments and
microtubules).
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Fig. 15. Examples of registration by our approach. Four difieGolgi apparatus volumes (top) are successfully
mapped onto another reference volume (bottom). The top founweldata were collected from one living cell
with varying time.




