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We propose a novel approach to 3D image registration of intracellular volumes. The approach ex-
tends a standard image registration framework to the curved cell geometry. An intracellular volume is
mapped onto another intracellular domain by using two pairs ofpoint set surfaces approximating their
nuclear and plasma membranes. The mapping function consists of the affine transformation, tetrahe-
dral barycentric interpolation, and least-squares formulation of radial basis functions for extracted cell
geometry features. An interactive volume registration system is also developed based on our approach.
We demonstrate that our approach is capable to create cell models containing multiple organelles from
observed data of living cells.
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1. Introduction

Recent advances in live cell imaging make it possible to observe the organellesa in living
cells as 3D images. Quantitative analysis of suchintracellular volumeshas thus become im-
portant in cell biology [10]. Also numerical simulations based on the intracellular volumes
are becoming popular in recent biophysics and systems biology. Therefore, constructing

aIn this paper, we use a word oforganellefor objects in living cells such as organelles, cytoskeletons, vesicles,
etc. for the sake of simplicity.
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the cell shape models which include multiple organellar structures has considerable atten-
tions in order to simulate intracellular events realistically. Intracellular volumes are usually
determined under a confocal laser microscope with fluorescent organellar markers. Unfor-
tunately, simultaneous observation of many different fluorescent markers is not possible
because of technical difficulties with microscopes, fluorescent markers, and cell conditions
([4,14], and references therein). Only one or two fluorescent markers are usually employed
in cell biology experiments to avoid the problems caused by increasing markers.
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Fig. 1. Intracellular volume registration flowchart.

Our approach. In this paperb, we propose a novel approach tointracellular volume reg-
istration (the non-rigid alignment of separately observed 3D images of the different intra-
cellular objects) as an alternative solution to overcomingthe difficulties of simultaneous
observation. The main idea behind the approach is to construct a function that maps one in-
tracellular domain to another by using the geometric feature points extracted from the cell’s
nuclear and plasma membranes. Figure 1 illustrates a flowchart of our approach. First, we
observe the cytoplasm together with its nucleus as a reference volume, and simultaneously
the objective organelle as its corresponding target volume. The cytoplasm and nucleus are
chosen because their topological configuration during interphase, that of a sphere envelop-

bIt is an extension of our previous work [42]. The main difference from [42] includes the improvements in
our least-squares RBF formulation with self-intersection fairing in addition to more detailed description of the
proposed approach.
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ing another sphere, is simple. Then these regions are isolated from their backgrounds to
produce segmented reference volumes. Next, the nuclear andplasma membranes are ap-
proximated by a pair of point set surfaces sampled on the boundaries of the isolated regions,
and their geometric features are extracted. Next, a mappingfunction between a pair of ref-
erence volumes is constructed by applying affine transformation, tetrahedral barycentric
interpolation, and least-squares radial basis function (RBF) fitting methods to the extracted
features. Finally, the constructed mapping function is applied to one of the reference and
its corresponding target volumes.

Contribution and benefit. The goal of this study was to generate a numerical cell model
including multiple organelles that represents living cellas close as possible. Such a model
is useful for presenting combined organellar information to biologists and for running nu-
merical cell simulations. Our approach is capable of integrating individually observed intra-
cellular objects, as demonstrated in Section 5. The study presents a new approach to over-
coming the difficulties of simultaneous observation of manydifferent fluorescent markers.
Its technical contribution includes an interactive intracellular volume registration system,
adapting the least-squares RBF to cell geometry, and a novelmethod for extracting cell ge-
ometry features; this method semi-automatically providesfeature point correspondences.

Paper organization. The rest of paper is organized as follows. Section 2 briefly describes
previous work on image registration. We present how to segment reference and target vol-
umes in Section 3. Section 4 describes the cell geometry registration technique. Our nu-
merical experiments are explained in Section 5. We concludethe paper in Section 6.

2. Previous Work on Image Registration

Image registration is popular and well-studied in computervision and image processing
communities [12, 18, 22]; see [44, 45], and references therein for general image registra-
tion techniques. The high-dimensional extensions of such techniques are often used in
bio-medical image processing [23, 34, 35] to merge CT, MRI, and microscopic images.
Non-rigid transformations are necessary for such bio-medical data because of the complex
curved geometry of the objects of study. In particular, traditional RBF fitting methods have
been used for non-rigid registration [11, 33, 36] and many other tasks. On the other hand,
non-rigid transformations for intracellular volumes had not been studied until very recently
[20,24,41] because the objects in living cells are usually not solid; they are also both topo-
logically and geometrically complex and vary with time. Therefore, intracellular volume
registration is a difficult problem, but it is a promising research subject because of rapid
advances in live-cell-imaging technology.

Mattes et al. employed a thin-plate spline transformation model with landmarks for
their 2D intracellular image registration [24]. Kim et al. proposed a non-rigid registration
approach to intracellular volumes of different cell nuclei[20]; the approach was based on
the so-called demons algorithm [38]. Yang et al. extended this approach to segmented vol-
umes [41]. However they considered only cell nuclei, which,unlike nuclear and plasma
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membranes, have a simple topological and geometrical configuration. Our approach is ca-
pable of transforming a volume domain (including organelles) between the nuclear and
plasma membranes, whereas the previous approaches [20,24,41] consider only the volume
domain inside the nucleus (with no organelles).

In contrast with the previous RBF techniques [11, 33, 36] used in CT and MRI image
registration, our approach employs a least-squares RBF fitting method that is popular in
geometry processing such as surface reconstruction [30] and shape editing [5].

3. Intracellular Image Segmentation

To construct a function mapping one volume onto another, we first isolate the nuclear and
cytoplasmic regions from their backgrounds. The target organellar region within the cyto-
plasm is segmented for further quantitative analysis, although the segmented target volume
is not necessary to construct the mapping function.

The intracellular volumes generated from observations of living cells contain noise.
Their low signal-to-noise ratio has causes, including poormicroscope resolution, Brown-
ian motion, blurring, movement of organelles, and bleaching of fluorescent markers [4].
Moreover, small variations made to the observation settings for different organelles intro-
duce inconsistencies in the same feature among images. Suchnoise and inconsistency make
it difficult to achieve high-quality segmentation of intracellular volumes. Our segmentation
technique incorporates noise reduction methods and clustering the filtered image.

Image details are important in isolating organelles for quantitative analysis. On the other
hand, image smoothness and robustness to small perturbations are required for segmenting
the nucleus and cytoplasm in order to construct a good mapping function. Therefore, we use
two image denoising filters for the targets (organelles) andtheir corresponding references
(cytoplasm and nucleus): Non-Local Means (NL-Means) [6] for targets and the Block-
Median Pyramidal Transform (BMPT) [28] for the references.BMPT filter is an exten-
sion of the pyramidal median transform [21] which was developed in astronomical image
analysis in order to isolating global regions of various illuminating points [37]. Since the
nuclear and cytoplasmic regions also consist of such illuminating points representing sets
of fluorescent proteins, the BMPT filter was chosen to producenicely smoothed volumes.
The multiresolution strategy of BMPT provides robustness for constructing our mapping
function. NL-Means filter preserves detail while reducing noise, and often used in image
segmentation [1, 13, 19]. Figure 2 shows advantages of the use of two different filtering
schemes in our segmentation technique.

After the filters are applied, the organellar, cytoplasmic,nuclear, and background re-
gions are segmented by unsupervised K-means clustering [27] for the filtered image in-
tensities. Finally, the unwanted isolated regions are labeled and merged to reproduce the
topological configuration of cytoplasm and nucleus. Figure3 illustrates the isolation of the
nucleus and cytoplasm from their backgrounds.

Image segmentation has been one of the most intensive fields of study in image pro-
cessing and computer vision [1, 17, 25, 43]. The conventional segmentation methods of
intracellular images [8,9,16,26] have been mainly designed to identify the entire cytoplas-
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Fig. 2. Noise robust and detail-preserving segmentations. Left: BMPT filtering of a 2D image (top) and segmen-
tation of a reference volume (bottom, microtubule’s cytoplasmand nucleus). Right: NL-Means filtering of a MRI
volume (top) and segmentation of a target volume (bottom, microtubules).

Input Images Segmented Images

BMPT [Resize =⇒ Median =⇒ Resampling] =⇒ K-Means & Merge

Fig. 3. Segmentation of cytoplasm and nucleus.

Fig. 4. Segmented intracellular volumes by our technique: microtubules (left), actin filaments (center), and Golgi
apparatus (right). In this research, we assessed the quality of segmentation by visual inspection of cell biologists.

mic or nuclear regions. Unfortunately, applying these methods to our reference volumes is
not straightforward. For example, a great amount of training data set for machine learning
[16], the user specified initial segmentation [26], extending the method of [8] to 3D, and
some optimization method to place the source and sink positions of graph cut algorithm [9]
are required in order to use these methods in our purpose. On the other hand, our simple
multiresolution strategy provides us satisfactory results as demonstrated in Figures 3 and
4. In addition, our technique is applicable to a more wide range of organellar volumes.
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4. Cell Geometry Registration

Our registration technique is based on extending a standardimage registration framework
summarized by Zitov́a et al. [45] to the curved cell geometry (Fig. 5). Our technique works
as follows. First, the geometric features of each referencevolume are extracted automati-
cally. Next, a mapping functionf : (u, v, w) → (x, y, z) between two different intracellular
domains(u, v, w) ∈ Ω1 and(x, y, z) ∈ Ω2 is constructed by using the extracted features
of a pair of reference volumes. In this mapping constructionphase, the affine transforma-
tion and tetrahedral barycentric interpolation are employed to align the reference volumes
roughly, and then the least-squares RBF provides the final detailed mapping. The choice
of the mapping methods and adjustments of the extracted features are interactively per-
formed by a user in our technique. Next, one of the target organellar volumes is mapped
onto another target domain via the constructed mapping function with resampling. We use
the inverse mapping with resampling (nearest neighbor and tri-cubic interpolation) which
is a common method to obtain transformed images in image processing [15, Sect. 2.6.5].
Finally, the resampled volume is integrated to another volume. The following subsections
describe the methods in our technique.
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Fig. 5. Our technique inherits the framework of [45] consisting of four steps: feature detection, feature matching,
transform model estimation, and transformation and resampling.

4.1. Cell Geometry Feature Analysis

Consider a given pair of plasma membranes represented by thepoint set surfaces∂1 and
∂2, which live in domainsΩ1 andΩ2, respectively. Letc1 andc2 be the centers of gravity
of ∂1 and∂2. Principal Component Analysis (PCA) of∂1 and∂2 gives us the pair of corre-
sponding principal axes{t1

1
, t1

2
, t1

3
} and{t2

1
, t2

2
, t2

3
}. The same computations are applied to

the corresponding nuclear membranes. Then the following feature and sub-feature points
are extracted for the two pairs of nuclear and plasma membranes (four point set surfaces).

Let ∂, c, and{t1, t2, t3} be one of the point set surfaces, its center of gravity, and its
principal axes, respectively. Assume thatt1 is the longest PCA direction of∂, andt3 is
perpendicular to the cell face on the cover-glass (xy-plane). If the calculatedt3 is far from
being a normal vector of thexy-plane, we computet1 andt2 by averaging 2D PCA axes
of ∂’s contour curves instead of the 3D PCA axes. The contour curves on∂ are obtained by
extracting sectional curves along thez-axis. Then,t3 is obtained by a cross product oft1

andt2.
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We consider three feature point sets sampled on∂ as shown in the images (a), (b),
and (c) of Figure 6. The three sets, in which consist of the six, twenty six, and eleven
feature points, are located on each of nuclear and plasma membranes. The feature points
are obtained by calculating intersections of∂ with the rays (half-lines) fromc. The first
two sets (a,b) are easily calculated from the PCA directions(six rays) and their bisectors
of adjacent PCA directions (twenty six rays). The last set (c) is specialized to a triangle-
patterned cell shape. We employed a triangle micro-patterned substrate in our live-cell-
imaging experiments, because it reduces complexity of the cell’s plasma membrane shape.
Their corresponding eleven rays in (c) are parallel to±t2,3, χ(t1), ±t2,3 + χ(t1), and
χ(±t2 − t1), whereχ(t) = (argmax

x∈∂ < x− c, t >)− c. Here the vector functionχ(t)

gives us the farthest direction with respect to a given vector t, and the multiple sub-index
ti,j corresponds toti andtj . The sub-feature points are sampled on the geodesics between
the feature points on∂.

Note that the correspondences between two sets of feature points on∂1 and∂2 are auto-
matically obtained by specifying the correspondence of thePCA directions{t1

1
, t1

2
, t1

3
} and

{t2
1
, t2

2
, t2

3
}, because the feature points (also sub-feature points) are automatically generated

after the PCA directions are obtained. This semi-automaticcorrespondence generation re-
duces a lot of manual registration, and it gives us an intuitive and interactive user interface,
as shown in Figures 6 (a,b,c) and 12. Moreover, these featurepoints are useful to generate
the RBF centers used in our RBF fitting method as shown in Figure 6 (d).

(a) (b) (c) (d)
Fig. 6. (a,b,c): extracted feature and sub-feature points based on PCA of nuclear (bottom) and plasma (top)
membranes. (d): automatic RBF center generation by using the extracted features with two bounding boxes of the
cytoplasm and nucleus.

4.2. Affine Transformation with PCA

When the shapes of two pairs of nuclear and plasma membranes are similar to each other,
the global mapping models [45] are the simplest way to obtainproper registration results.
Once the PCA directions are obtained, constructing one of the most frequently used global
mapping model to the curved cell geometry is as follows. The affine transformationf(x),
which transforms a pointx ∈ Ω1 to the domainΩ2, is automatically constructed via PCAs
of ∂1 and∂2:

f(x) = A(x − c1) + c2, A = (t2

1
, t2

2
, t2

3
)(t1

1
, t1

2
, t1

3
)−1.
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In addition, our technique allows a user to manually specifya corresponding pair of four
points on the plasma membrane surfaces (Fig. 7) for the affinetransformation.

(a) (b) (c) (d)
Fig. 7. A manual registration example via affine transformationwith a pair of four points. (a,c): the pair of
four points on the plasma membrane surfaces. (b): the point set surfaces approximating the nuclear and plasma
membranes. (d): the affine transformed point set surfaces via the pair of four points shown in (a) and (c).

4.3. Tetrahedral Barycentric Interpolation

Barycentric interpolation and its extensions are useful toform a mapping between two
polyhedra, because they have many properties desirable fora feature-preserving interpo-
lation [3]. In our case, valid tetrahedrization can be applied to the bounding boxes of the
cytoplasm and nucleus without any degeneration of a tetrahedron because of its topological
configuration such as a sphere enveloping another sphere (Fig. 8).

(a) (b) (c)

(d) (e) (f)
Fig. 8. Tetrahedrizations and their barycentric interpolation. (a): the cytoplasmic and nuclear bounding boxes
and its corresponding tetrahedrization (b). (d,e): the point set surfaces of (b) and another volume (c), respectively.
(f): the interpolated point set surfaces via the tetrahedrizations of (b) and (c) with their barycentric coordinates.

Six hexahedra are generated by connecting the corresponding corners of the nuclear and
cytoplasmic bounding boxes. The tetrahedrization consists of seven hexahedra (the gener-
ated six plus the nucleus bounding box), each of which consists of twenty four tetrahedra.
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The tetrahedra in each hexahedron are generated by adding a point to the hexahedron cen-
ter and six points to its face centers, and then connecting these points with the hexahedron
vertices.

The mapping function between a pair of tetrahedrizations inΩ1 andΩ2 is constructed
by a set of tetrahedral barycentric interpolations. The location of a point inside of the tetra-
hedron is given by the volume ratio of four tetrahedra as a generalization of 2D triangle
barycentric coordinates.

4.4. Least-Squares RBF Fitting

The following RBF fitting scheme is employed in our techniquein order to handle locally
deformed volumes which are difficult to obtain appropriate registration results by the affine
transformation and tetrahedral barycentric interpolation methods.

For a given pair of point sets{xi}
n
i=1

∈ Ω1 and{yi}
n
i=1

∈ Ω2 which represents a pair
of the reference volumes, we would like to find a vector-valued functiony = f(x) such
thatf(xk) = yk. The solution by a standard RBF is given by

f̂(x) = g(x) +

n
∑

j=1

λ̂jϕ(|x − xj |), λ̂j ∈ ℜ3, (1)

whereλ̂ = {λ̂i}
n
i=1

are the RBF coefficients andg(x) is a low degree trivariate polynomial
depending on the choice ofϕ(·). For example,ϕ(·) = | · | andϕ(·) = | · |3 with the lin-
ear and quadratic polynomials in (1) correspond to the biharmonic and triharmonic RBFs,
respectively. The interpolation̂f(x) = y and orthogonality

∑n
j=1

λ̂jxj =
∑n

j=1
λ̂j = 0

conditions lead a linear system
(

Φ Q

QT 0

)(

λ̂

g

)

=

(

y

0

)

, Φij = ϕ(|xi − xj |), Qij = Qj(xi),

whereg = {gk}
l
k=1

are the coefficients ofg(x) andQk(xi) is a basis ofg(xi) which
corresponds togk.

To fit the RBF robustly, we use the following least-squares RBF formulation. Consider
the so-called RBF centersξ = {ξj}

m
j=1

, which consist of one of the feature point sets inΩ1

and the bounding box vertices of the cytoplasm and nucleus (Fig. 6, (d)). Letp = {pi}
n
i=1

be a set of feature and sub-feature points of the cytoplasm and nucleus inΩ1 (two point set
surfaces) and letq = {qi}

n
i=1

be the corresponding set of feature and sub-feature points in
Ω2. Then, the LS-RBF is given by

f(x) = g(x) +

m
∑

j=1

λjϕ(|x − ξj |), λj ∈ ℜ3, n ≫ m,

where we useϕ(u) = u3 and a linear polynomial forg(x). The polynomial and RBF
coefficientsλ = {λj}

m
j=1

andg = (g1, g2, g3, g4) are obtained by solving a least-squares
system of linear equations

(λ,g)T = (AT A)−1AT (q,0)T . (2)
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Here the rectangular matrixA is composed by satisfying the following interpolation and
orthogonality conditions:f(p) = q and

∑m
j=1

λjξj =
∑m

j=1
λj = 0. Thus we have

A =


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




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

,

Φij = ϕ(|pi − ξj |),

ξi = (ξx
i , ξ

y
i , ξz

i ),

pi = (px
i , p

y
i , pz

i ).

The resulting RBF is the so-called pseudo-cubic function [39]. Since the RBF may
generate space folding (Fig. 9), the linear regression RBF scheme [7,31] is used as

(AT A) ⇒ (αβ

(

I 0

0 0

)

+ (AT A))

to reduce self-intersections, whereI is amxm identity matrix,β is an absolute maximum
value of a diagonal element subset{(AT A)ii}

m
i=1

, andα is a user-specified smoothness
parameter. Figure 10 demonstrates the self-intersection fairing results with varyingα.

Fig. 9. 2D examples of foldover via the RBF. We can see space folding from the left to right images.

α: 0.0 10
−8

9× 10
−8

6.1× 10
−4

Fig. 10. Self-intersection fairing by the linear regression. Increasingα (left to right) interactively penalizes self-
intersections caused by LS-RBF. Top and bottom images correspond to top and bottom views of the mapped point
set surfaces.

The equation (2) is numerically solved by using the LU decomposition [32]. Note that
we only need to decompose the(m+4)x(m+4) square matrix(AT A) whenξ andp are
changed by user interactions. Thexyz-components of(λ,g) are obtained by separately
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applying backward substitution of each component ofAT (q,0)T with the decomposed
matrix. The point numbers ofp, q, ξ, ∂1, and∂2 are relatively smaller than the voxel num-
bers of reference volumes, therefore we update and visualize the point set surfaces during
the user interactions instead of constructing the mapped volume. Since the backward sub-
stitution is quite fast, constructing and applying our LS-RBF to the point set surfaces are
sufficiently fast for interactive registration. Figure 11 shows the volumes and their corre-
sponding point set surfaces mapped via our LS-RBF.

(a) (b) (c) (d)
Fig. 11. LS-RBF fitting with inverse mapping. (a): two pairs offeature and sub-feature points on the nuclear and
plasma membranes. (b): two pairs of cytoplasm with nucleus. (c): boundary point sets approximating the plasma
and nuclear membranes. (d): point sets and volume transformed via the LS-RBFf and its inverse mappingf−1.

4.5. Interactive Registration System

We have developed a computer-aided registration system based on our registration tech-
nique. The system is implemented by using Java Development Kit with Java3D. Figure 12
illustrates a graphical user interface (GUI) of the system.

Fig. 12. Interactive registration system GUI.

The system includes a 3D volume rendering window in order to visualize input ref-
erence volumes. This 3D rendering window provides the interactive GUI to repositioning
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the feature points restricted on the nuclear and plasma membrane surfaces of the cell (Fig.
12, right). Changes of visualization and registration settings by a user are immediately re-
flected on the 3D rendering window. Then, the system performsthe cell geometry feature
extraction method and the mapping methods described above.Finally, the system updates
the 3D rendering window according to the results of the methods. This interactive system
provides intuitive registration of intracellular volumes.

5. Results

In experiments, we used HeLa cells cultured on a triangular micro-patterned substrate pro-
duced by the photochemical method [29] to regularize the observed living HeLa cell shapes.
A fluorescent-protein-tagged nuclear localization signal(NLS) plasmid was employed to
characterize the cytoplasm and nucleus. The parameters of the BMPT and NL-Means for
different organelles were decided on by cell biologists, who selected the result that they
considered to be the best approximation of the organelles byusing varying parameters to
filter the results. All numerical experiments were performed on a Core2Duo PC (2.4 GHz,
no parallelization is used) with 8 GB RAM.

Figures 13, 14, and 15 show our registration results, in which the resulting volumes
consist of 304x508x116 voxels. The shapes and positions of the mapped organellar volumes
are reasonable, even though the geometric configurations ofthe cytoplasm and nucleus are
complex. We examined our registration approach to twenty seven pairs of the intracellular
volumes. The segmentation and registration qualities werevisually inspected by seventeen
cell biologists in terms of intracellular morphology.

The resulting volumes provide us the combined geometry and positions of organelles
among the individually observed cells. For example, we can easily see the relative positions
of cytoplasm, nucleus, and Golgi apparatus among varying time in the bottom images of
Figure 15, whereas these relationships are not clear in the top images because of different
nuclear and plasma membrane shapes. Also 3D combined information of complex intracel-
lular objects as actin filaments and microtubules shown in Figure 14 is difficult to imagine
without registration of them. This is an advantage over raw image data and the previous in-
tracellular image registration approaches [20,24,34,41]for analyzing organellar dynamics
and functions.

Unlike the landmarks used in [24] and the image intensity of cell nuclei employed in
[20, 41], our approach does not depend on the target organellar volumes explicitly. There-
fore, our registration results are much robust with respectto topology changes of obser-
vation targets which biologist would like to analyze. Note that the techniques of [20, 41]
are not able to merge the organelles. Compared with recent image registration techniques
[33, 35, 36], our approach is preferable for mapping intracellular volumes because of our
method for extracting cell geometry features.

Our use of the point set surfaces gives us the interactive registration rate (about 1-10
microseconds) for the computations that require user manipulation, such as adjustments to
the corresponding points in the LS-RBF fitting, the corresponding mapping calculations,
and visualization of the mapped point set surfaces. The inverse volume resampling requires
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a few minutes. One intracellular volume registration task can be completed within 5-20
minutes by an experienced user with our system.

Discussion. In this research, accuracy and quality of the registration results depend on vi-
sual inspections of individual cell biologists who acquired the corresponding intracellular
volumes. Unfortunately their criterions are heuristic, because a ground truth of organellar
shapes is not mathematically formalized in current cell biology. Thus, we used their edu-
cated guesses for validating the registration results. In future work, combining the machine
learning techniques [2, 40] with our approach is promising in order to incorporate such
perceptual knowledge on organellar shapes more systematically.

Future work includes the intracellular registration during cell division. Also implement-
ing physically-based transformations such as visco-hyperelastic deformations to our regis-
tration approach is interesting, although it is difficult toestimate physical parameters in
living cells.

6. Conclusion

In this paper, we proposed a novel approach to intracellularvolume registration based on
constructing a function mapping one intracellular volume onto another by analyzing the
geometry of the plasma and nuclear membranes. This approachallows us to integrate the
volumes of individually observed organelles, which is difficult in conventional live cell
imaging. We presented three mapping methods (affine transformation, tetrahedral barycen-
tric interpolation, and least-squares radial basis function fitting) specialized to intracellular
volumes. The interactive intracellular volume registration system was also developed. Be-
sides its benefits to quantitative analysis in cell biology,our approach is useful for cell
simulations based on real-world data.
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Fig. 13. Two organellar volumes (actin filaments and Golgi apparatus) are combined where the corresponding
reference volumes are shown in the most left images of Figure 15.

Fig. 14. Left: the target and reference volumes of microtubules. Center: the volume of microtubules mapped
onto the actin’s reference volume. Right: the registration result of two organellar volumes (actin filaments and
microtubules).

Fig. 15. Examples of registration by our approach. Four different Golgi apparatus volumes (top) are successfully
mapped onto another reference volume (bottom). The top four volume data were collected from one living cell
with varying time.


