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Figure 1. Generating fair triangle meshes with discrete elastica. (a) An initial mesh outlined a complex
tubular object. (b) A discrete elastica surface (mesh) obtained from the initial mesh. (c) The Stanford
bunny model with a large part of the mesh removed and then triangulated. (d) The modified part of
the bunny is restored as a discrete elastica. Coloring by the mean curvature is used to demonstrate
a high quality of the generated meshes.

Abstract

Surface fairing, generating free-form surfaces satisfy-
ing aesthetic requirements, is important for many computer
graphics and geometric modeling applications. A common
approach for fair surface design consists of minimization
of fairness measures penalizing large curvature values and
curvature oscillations. The paper develops a numerical ap-
proach for fair surface modeling via curvature-driven evo-
lutions of triangle meshes. Consider a smooth surface each
point of which moves in the normal direction with speed
equal to a function of curvature and curvature derivatives.
Chosen the speed function properly, the evolving surface
converges to a desired shape minimizing a given fairness
measure. Smooth surface evolutions are approximated by
evolutions of triangle meshes. A tangent speed component
is used to improve the quality of the evolving mesh and to in-
crease computational stability. Contributions of the paper
include also an improved method for estimating the mean
curvature.
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1 Introduction

Variational shape fairing, generating shapes satisfying
certain aesthetic requirements, via minimization of fairness
measures penalizing large curvature values and curvature
oscillations is an active research area [10, 5, 17, 18, 19, 14,
12, 13]. A popular surface fairing measure used in various
computer graphics and geometric modeling applications is
the so-called total curvature functional [6, 5, 18]

∫∫
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Here kmax and kmin are the surface principal curvatures,
and dA is the surface area element. The total curvature (1.1)
approximates the elastic bending energy of a thin plate [6].



Let us call the surfaces minimizing (1.1)
∫∫
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min) dA → min (1.2)

elastica surfaces because they generalize the famous Eu-
ler’s elastica curves [3] (see also [1] for a good literature
review and for a very effective method to approximate the
elastica curves by polygonal curves).

The Euler-Lagrange equation corresponding to (1.2) is
given by

∆BH + 2H(H2 − K) = 0, (1.3)

where H and K are the mean and Gaussian curvatures, re-
spectively, and ∆B is the Laplace-Beltrami operator. See
[4][pages 82-85] for a derivation of (1.3).

In this paper, we develop an approach for approximating
elastica surfaces by triangle meshes. Our approach to min-
imize the total curvature functional (1.1) can be considered
as a combination of the steepest descent method for (1.2)
with finite differencing (approximating a smooth surface by
a triangle mesh). A preliminary version of the approach was
developed in [21].

Consider a family of smooth surfaces S(t, u, v), where
u, v parameterize the surface and t parameterizes the fam-
ily. We suppose t to be independent of u, v. Let us assume
that the family evolves according to the following evolution
equation

∂S(t, u, v)

∂t
= F N, S(0, u, v) = S(0)(u, v), (1.4)

where N(t, u, v) is the unit normal vector for S(t, u, v), F is
a speed function. The family parameter t can be considered
as the time duration of the evolution. The gradient-descent
flow for (1.2) is given by (1.4) with

F ≡ −∆BH − 2H(H2 − K). (1.5)

If a surface evolved by (1.4), (1.5) converges to a limit sur-
face S(∞, u, v), as t → ∞, then it is an elastica since the
Euler-Lagrange equation (1.3) is satisfied for that limit sur-
face.

We approximate the evolution (1.4), (1.5) by a discrete
evolution of triangle meshes and use discrete analogues of
the Laplace-Beltrami operator and Gaussian and mean cur-
vatures.

One of the important contributions of the paper consists
of adding to a discrete version of (1.4) a special tangent
speed component used to improve the quality of the evolv-
ing mesh and to increase computational stability. The paper
presents also an improved method for estimating the mean
curvature of a surface approximated by a triangle mesh.

Fig. 1 illustrates how our method can be used in vari-
ous geometric modeling applications. The two left images

demonstrate an initial triangle mesh approximating a tubu-
lar object and a discrete elastica obtained from that initial
mesh by a discrete approximation of (1.4), (1.5). The two
right images show how a large missed part of a complex
mesh (Stanford bunny) can be restored by a discrete elas-
tica surface. Coloring by the mean curvature demonstrates
a high quality of the generated meshes.

2 Numerical Implementation

To solve (1.4) numerically, we first approximate the time
derivative term in (1.4) by its forward difference approxi-
mation

∂S(t, u, v)

∂t
≈

S(t + τ, u, v) − S(t, u, v)

τ
, τ � 1.

Thus we approximate (1.4) by a discrete evolution process

S(t + τ, u, v) = S(t, u, v) + τFN(t, u, v), (2.1)

where the speed function F is defined by (1.5). Then
the surface S(t, u, v) is approximated by a triangle mesh
and discrete approximations to the Laplace-Beltrami oper-
ator, Gaussian and mean curvatures, and other geometric
attributes are considered. Thus the discrete evolution of sur-
faces (2.1) is approximated by a mesh updating process

P(k+1)
i

= P(k)
i

+ τ (k)F
(k)
i

N(k)
i

, (2.2)

where the points {P(k)
i

} form a mesh M(k) obtained after
k steps of the process from an initial mesh M(0) approx-
imating S(0)(u, v), N(k)

i
is the unit mesh normal at P(k)

i
.

Here the unit mesh normal N at vertex P is computed as the
normalized weighted sum of of the normals of the incident
triangles, with weights equal to the areas of the triangles.

Since (1.4), (1.5) is a fourth-order partial differential
equation, (the term ∆BH involves fourth-order surface
derivatives) we choose the step-size τ (k) in (2.2) propor-
tional to the squared area of the smallest triangle of M(k).
More precisely, we set τ (k) = A2

k
/150, where Ak is the

minimal triangle area among the all triangles of M(k).

Tangential drift for equalization of mesh triangles.
Note that (2.2) is similar to an explicit finite difference
scheme for a parabolic partial differential equation and,
therefore, may be unstable if step-size τ (k) is not small
enough in a comparison with mesh triangles. Thus we can
expect that a better stability of the discrete mesh evolution
process can be achieved if the mesh triangles which are
close to equilateral triangles and have almost the same size.

Our mesh triangle equalization technique consists of
adding a tangent speed vector to (2.2). Note that adding
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a tangent speed component to (1.4) affects only the surface
parameterization. Therefore instead of (2.2) we consider

P(k+1)
i

= P(k)
i

+ τ (k)F
(k)
i

N(k)
i

+ ε(k)T(k)
i

, (2.3)

where T(k)
i

is a vector orthogonal to N(k)
i

and attached at
P(k)

i
, ε(k) is a small positive parameter.

At an inner mesh vertex P let us consider the so-called
umbrella-operator [16, 8] defined by

U(P) =
∑

i

wi

−−→PQ
i
, (2.4)

where summation is taken over all neighbors of P, wi are
positive weights. The geometric idea behind the umbrella
operator is illustrated in Fig. 2.

P

Q

Q
Q

i

i+1

i−1

u(P)

Figure 2. Umbrella operator associated with a
mesh vertex P is defined as a weighted aver-
age of the neighbor vectors, see (2.4).

In [11] it was proposed to use the tangent component
of U0, the umbrella operator with equal weights, for mesh
regularization . The tangent component of the bi-umbrella
operator U2

0 = U0◦U0 was used in [20] for similar purposes.
Following [22, 21] we use the tangent component of an

area weighted bi-umbrella operator U2
area:

T = −
[

U2
area − (U2

area · N)N
]

, (2.5)

where

Uarea(P) =
1

2An

n
∑

i=1

ai

( −−→PQ
i

|
−−→PQ

i
|
+

−−−−→PQ
i+1

|
−−−−→PQ

i+1|

)

,

where ai is the area of the triangle Q
i
PQ

i+1, n is the num-
ber of neighboring vertices for P, A =

∑

n

i=1 ai is the total
area of the triangles adjacent to P.

If P is a boundary vertex, we set Uarea(P) = 0.
According to our numerical experiments, setting ε(k) =

12Ak produces good results. Here Ak be the minimal trian-
gle area among the triangles of the evolving mesh M(k).

Fig. 3 demonstrates equalizing mesh triangles by (2.3)
with the tangent component defined by (2.5). and τ (k) = 0.
Notice how well the proposed procedure of mesh equaliza-
tion preserves the shape approximated by the original mesh.

Figure 3. Left: a mesh consisted of two parts
with different sampling rates. Right: tangen-
tial mesh evolution (2.3) with τ (k) = 0, (2.5)
was used to equalize the mesh triangles.

The mesh boundary vertices are treated in a similar but
more complex way since they are allowed to move along
the boundary of S(u, v) only. For implementation details
see [21].

Approximation of Laplace-Beltrami operator and cur-
vatures. Recently a very efficient approximation of the
Laplace-Beltrami operator for a surface approximated by a
triangle mesh was proposed in [9]. The Laplace-Beltrami
operator ∆B(P) at a mesh vertex P is defined by

∆B(P) =
3

A

n
∑

i=1

(cot αi + cot βi)(Qi
− P), (2.6)

where A is the total area of the triangles adjacent to P, αi

and βi are the angles 6 PQ
i−1Q

i
and 6 PQ

i+1Q
i
, respec-

tively.
Given a smooth surface S and a triangle mesh M approx-

imating the surface, we use a standard angle-deficit approx-
imation for the Gaussian curvature

K =
3

A
(2π −

M
∑

i=1

ϕi),

where ϕi is the angle between PQ
i

and PQ
i+1.

Since for a smooth surface ∆BS = 2HN [15], a discrete
approximation of the mean curvature H can be derived from
the above discrete approximation of the Laplace-Beltrami
operator

H =
1

2
N · ∆BP.

This approximation works very well in many applications
[2, 9].

Although H2 − K is always positive for a smooth sur-
face, it is not necessary true for discrete approximations of
the Gaussian and mean curvatures. A standard approach to
cope with this problem is to detect the mesh vertices where
a discrete approximation of H2 − K is negative and set it
equal to zero at those vertices.
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However this approach is not acceptable to us since the
term H2 − K is presented in (1.5) and it is not desired to
have it discontinuous.

Let D denote the set of those mesh vertices for which
H 6= 0 and H2 − K < 0. We first compute

λ = min
D

√

H2

K
.

Then we re-scale the mean curvature H → H/λ for the all
vertices of D.

Since the quality of the mesh is improved during the evo-
lution (2.3), λ → 1 as k → ∞.

Subdivision. In order to accelerate the mesh evolution
process (2.3) we start from a coarse mesh and perform the
linear one-to-four mesh subdivision when (2.3) is close to
its steady-state. Fig. 4 show various stages of approximat-
ing an elastica surface via combining (2.3) with subdivision.

Figure 4. Starting from a coarse mesh evolved
by (2.3), linear one-to-four mesh subdivision
is used when (2.3) is close to its steady-state.

3 Numerical Experiments

Mesh fairing. We compare the discrete elastica flow
(2.3), (1.5) with the bilaplacian flow

P(k+1)
i

= P(k)
i

− τ U2
0 (P(k)

i
),

and a mesh evolution (2.3) by the Laplacian of mean curva-
ture flow with speed F equal to

F = −∆BH (3.1)

(various numerical approaches to the Laplacian of mean
curvature flow were developed in [14, 12]).

Figures 5, 6 and 7 demonstrate various stages of mesh
fairing by the bilaplacian flow, the Laplacian of mean cur-
vature flow, and the discrete elastica flow, respectively. The
mesh shown in Fig. 1 (a) is used as the initial mesh. The
fairing processes are also combined with subdivision. These
figures and Fig. 8 demonstrate the superiority of the discrete
elastica flow (2.3), (1.5) over the bilaplacian flow and the
Laplacian of mean curvature flow. Coloring by the mean
curvature is used to visualize the geometric quality of the
meshes.

Figure 5. Mesh fairing by bilaplacian flow.

Figure 6. Mesh fairing by the Laplacian of
mean curvature flow.

Figure 7. Mesh fairing by discrete elastica
flow.

Figure 8. Discrete elastica flow produces high
quality shapes.

Figure 9. Stanford bunny with a large part of
its flank removed and then triangulated.

Figure 10. The bunny flank is restored by the
discrete elastica flow.
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Shape restoration via elastica flow. When a real-world
object is digitized by a range finder, a part of shape infor-
mation may be lost because of specular reflection effects,
object self-occlusion, etc. The elastica flow can be used to
restore missed shape parts.

Fig. 9 demonstrates the Stanford bunny having a large
part of its flank removed and then triangulated. The dis-
crete elastica flow is applied to the triangles filled the hole.
The result is presented in Fig. 10. Notice a high quality of
the restored part of the bunny.

4 Conclusion

The paper developed a numerical approach for generat-
ing high quality, nice-looking shapes via the discrete elas-
tica flow. Contributions of the paper include adding a tan-
gential speed component to the elastica gradient-descent
flow for increasing computational stability of the flow, pre-
senting an improved method for estimating the mean cur-
vature of a surface approximated by a triangle mesh, and
combining the mesh evolution approach with mesh refine-
ment. Applications of the proposed numerical approach to
mesh fairing and shape restoration were demonstrated.

Combining the developed approach with the automatic
dynamic connectivity method [7] and using implicit nu-
merical schemes for the elastica gradient-descent flow (1.4,
(1.5) constitute themes for future research.
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