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Abstract

In this paper, a new free-form shape deformation approach is proposed. We combine a skeleton-based mesh de-

formation technique with discrete differential coordinates in order to create natural-looking global shape defor-

mations. Given a triangle mesh, we first extract a skeletal mesh, a two-sided Voronoi-based approximation of the

medial axis. Next the skeletal mesh is modified by free-form deformations. Then a desired global shape deforma-

tion is obtained by reconstructing the shape corresponding to the deformed skeletal mesh. The reconstruction is

based on using discrete differential coordinates. Our method preserves fine geometric details and original shape

thickness because of using discrete differential coordinates and skeleton-based deformations. We also develop

a new mesh evolution technique which allow us to eliminate possible global and local self-intersections of the

deformed mesh while preserving fine geometric details. Finally, we present a multi-resolution version of our ap-

proach in order to simplify and accelerate the deformation process. In addition, interesting links between the

proposed free-form shape deformation technique and classical and modern results in the differential geometry of

sphere congruences are established and discussed.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Global free-form mesh deformations is an active research
area which is greatly stimulated by demands of the digi-
tal entertainment industry. Each year brings new approaches
as well as combinations and reworking of old favorites
[BSPG06, BPGK06, FTS06, HSL∗06, JSW05, LSCOL05].
and this year is not an exception [BPWG07, LCOGL07,
JMD∗07, KMP07] In particular, skeleton-based mesh de-
formation techniques remain powerful and competitive
[YBS03,DQ04,LKA06,YHM06, IBP07,WSLG07].

In this paper, we propose a new approach to skeleton-
based global mesh deformations. Conceptually our approach
to free-form shape deformations is quite simple. Given a 3D
solid, we extract its Blum skeleton and represent the bound-
ary of the solid as the envelope of spheres whose centers
lie on the skeleton. The boundary is now determined by the
geometry of the skeleton and a radial vector field from the
sphere centers to the boundary of the solid. (Each sphere
centered at a regular point of the skeleton has two points of
tangency with the envelope and, therefore, defines two radial
vectors from the sphere center to the tangency points. In or-
der to define properly the radial vector field we distinguish

two sides of the skeleton: each regular skeleton point is du-
plicated and each duplicate is assigned with its correspond-
ing radial vector.) A free-form deformation is then applied to
the skeleton while the radial vectors and their relative posi-
tions (w.r.t. the skeleton) are preserved. The deformed shape
is now reconstructed for the deformed skeleton and its ra-
dial vector field. Mathematical aspects of such surface re-
construction and representation is currently a subject of in-
tensive research [GK03,Dam05,Dam07].

The idea of skeleton-based shape deformations was pro-
posed by Blum, the inventor of the skeleton [Blu67]. (The
Blum skeleton is also known under the name of Medial
Axis, but we prefer to call it “skeleton” since for generic
3D shapes it consists of a set of surface patches glued to-
gether.) In his seminal paper [Blu73], Blum suggested to
consider the so-called flexures, shape deformations which
changes the skeleton of a plane figure while maintaining
the object’s width associated with the skeleton. In graph-
ics and modeling, skeleton-based deformation techniques
[BL99, Blo02, YBS03] appeared as natural generalizations
of metaballs [Bli82] and convolution surfaces [BS91]. At
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(a) (b) (c) (d)

Figure 1: A skeleton-based variational mesh deformation example. (a): The Armadillo model represented according to the

Displaced Subdivision Surface (DSS) multi-resolution scheme [LMH00] (332K triangles), the skeletal mesh computed for the

DSS base mesh (5K triangles), and a stick-figure skeleton to be used for a deformation of the skeleton. (b): A Skeletal Subspace

Deformation (SSD) [MTLT88, LCJ94] is applied to the skeletal mesh. (c): A deformation of the DSS control mesh is obtained

by using discrete differential coordinates associated with the deformed skeletal mesh. (d): Displacement details are added to

the deformed DSS control mesh.

present skeleton-based shape manipulations are widely used
for biomedical image analysis purposes [PFF∗03].

Surprisingly shape deformations similar to Blum’s flex-
ures were considered fifty years earlier by Bianchi [Bia23,
Chap. XIX] in connection with his study of families of
spheres (sphere congruences) and their envelopes. One re-
markable Bianchi’s result is that given a two-parameter fam-
ily of spheres and its envelope, if the locus of the centers is

bended the two points of contact of each sphere with the en-

velope retain invariable positions. (A simple proof of this
statement is given in Appendix A of our paper.) This obser-
vation is at the heart of our approach.

Of course, a practical realization of the above general the-
oretical strategy for skeleton-based deformations is far from
being simple. First of all, a robust extraction of the skele-
ton and the radial field is a difficult problem. Second, shape
reconstruction from the deformed skeleton and the corre-
sponding radial vector field is a tough computational task.
Next, the reconstructed shape may have (and usually has)
self-intersections and further post-processing procedures are
needed to eliminate them. Finally, straightforward imple-
menting of the above approach for complex shapes approx-
imated by large-size meshes is time consuming and, there-
fore, not practical.

In our approach, we combine a skeleton-based mesh de-
formation technique with discrete differential coordinates

[Ale03, Sor06] in order to create natural-looking global
shape deformations. Given a triangle mesh, we first extract a
skeletal mesh, a two-sided Voronoi-based approximation of
the skeleton (medial axis). Next the skeletal mesh is modi-
fied by free-form deformations. Then a desired global shape
deformation is obtained by reconstructing the shape corre-
sponding to the deformed skeletal mesh. The reconstruc-
tion is based on using discrete differential coordinates. Our
method preserves fine geometric details and original shape
thickness because of using discrete differential coordinates
and skeleton-based deformations. We also develop a new
mesh evolution technique which allow us to eliminate possi-
ble global and local self-intersections of the deformed mesh
while preserving fine geometric details. Finally, we present a
multi-resolution version of our approach in order to simplify
and accelerate the deformation process. The main stages of
our approach are demonstrated in Fig. 1 and typical mesh
deformations are also shown in Fig. 2.

2. Skeleton extraction and deforming

Consider a closed surface M and its skeletal structure
(S,R), where S is the skeleton of M and R is the cor-
responding radial function. Following [HBK02, YBS03,
Dam05,Dam07] let us consider the “double” of S, the sur-
face generated by stretching M over S by the so-called
grassfire flow movingM in the direction of its inward nor-
mal with unit speed (see, for example, [Dam05] for a mathe-
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Figure 2: Gymnastic exercises for Armadillo.

matically rigorous definition of the double skeleton and nice
illustrations). Topologically the double skeleton S̃ is an or-
dinary two-sided surface homotopically equivalent to M.
Geometrically S̃ is not, in general, a smooth surface: it has
sharp edges at the singularities of the skeleton S. The one-
to-one correspondence between the points ofM and S̃ can
be represented by the equation

M = S̃ +RN, (1)

where N denotes the field of outer normal ofM. In the rest
of this paper, we simplify notations by denoting the double
skeleton S̃ by S.

In geometric modeling, shape representation (1) was in-
troduced in [SPW96].

Now we consider a discrete setting and assume thatM is
a triangle mesh. The corresponding skeletal mesh S is gen-
erated as follows. First the Quickhull algorithm [BDH96] is
used to compute the Voronoi diagram of the set of vertices
of M and for each vertex its Voronoi cell is determined.
Then the vertices of S are computed as the inner Voronoi
poles [ABK98]. Finally the connectivity (topology) of S is
inherited from the connectivity ofM. The resulting skeletal
mesh S satisfies (1) where N is the set of the corresponding
outer mesh normals at the vertices ofM.

It is well known that the skeleton of a shape is highly
sensitive to even small perturbations of the shape. However
we are not interested in a very accurate extraction of the
skeleton since inaccuracies can be compensated by the ra-
dial function R in (1). We gently simplify the geometry of
the skeleton by applying a variant of the bi-Laplacian tan-
gential flow [WSGD00] to the skeletal mesh. Namely, the
bi-Laplacian tangential flow is applied only to those vertices

Figure 3: Skeletal mesh extraction. Left: Homer mesh and

its Voronoi poles. Center: the triangulation of the Voronoi

poles inherits the Homer mesh connectivity. Right: the re-

sulting skeletal mesh.

of S for which the inner product between the flow speed vec-
tor and the displacement vector in (1) is negative. The flow
mostly acts on the skeleton’s sharp edges where the density
of the skeletal mesh vertices is high and the angle between
the flow speed and n, the outer normal ofM, is obtuse. Thus
the flow reduces geometric complexity of the skeleton. Fi-
nally, the radial function R is appropriately updated.

Any intuitive free-form deformation technique for the
skeletal mesh seems appropriate for our approach. In partic-
ular, inspired by [MTLT88, LCJ94,Blo02] we implemented
a Skeletal Subspace Deformation (SSD) scheme. The de-
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formations of the skeletal mesh are controlled by deforma-
tions of a stick-figure skeleton built manually for the skeletal
mesh, as seen in Fig. 1.

3. Mesh reconstruction from deformed skeleton

Our task now is to reconstruct a deformed meshMd using
the deformed skeletal mesh Sd and radial field R.

First, a fragmented meshMF (a triangle soup) is gener-
ated by applying local transformations to all triangles ofM
where the transformations are defined by according to the
local frames attached S and Sd . ThenMd is obtained by
stitching the fragmented mesh triangles based on minimiz-
ing and redistributing a deformation error. Here the error is
given by a squared difference between the discrete differ-
ential coordinates ofMF andMd . Similar strategies were
applied for stitching fragmented meshes in [SP04,YZX∗04,
ZRKS05].

Let x, s, and sd be the corresponding vertices of meshes
M, S, and Sd , respectively. According to (1) the corre-
sponding vertex of the deformed meshMd should computed
by

x
d = sd +Rnd , (2)

where R= |x− s| is the radius of the medial ball ofM cen-
tered at s, as seen in Fig. 4. In practice, instead of (2) a sim-
ilar shift transformation is applied to the triangles of the de-
formed skeletal mesh Sd .

R
M

S

R Sd

M d
nd

n

si

x i xd
i

sd
i

Figure 4: Left: a given shape is represented as an envelope

of spheres centered at the skeleton of the shape. Deform-

ing the skeleton while preserving the sphere radii implies a

global shape deformation.

Let {xi,x j,xk}, {si,s j,sk}, and {sdi ,s
d
j ,s
d
k} be corre-

sponding triangles ofM, S, and Sd , respectively. Denote by

B0 =
(

v0, t
1
0, t
2
0

)

a basis-vector frame defined by the skeletal

mesh triangle {si,s j,sk}. Here

t
1
0 =

s j− si
|s j− si|

, t
2
0 =

sk− si
|sk− si|

, and v0 = t10× t
2
0.

The corresponding basis-vector frame for {sdi ,s
d
j ,s
d
k} is

computed similarly. See Fig. 5 for an illustration.

It is accurate and computationally robust to approximate
the normal ni ofM at xi by (xi− si)/|xi− si| [DS06]. Now
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Figure 5: Corresponding triangles ofM, S, and Sd . Local
coordinate frames are attached to the corresponding trian-

gles of S and Sd .

the local coordinate transform BdB
−1
0 defined for each tri-

angle T of Sd is used to approximate n
d
i :

n
d
i = BdB

−1
0 (xi− si)

/∣

∣

∣
BdB

−1
0 (xi− si)

∣

∣

∣
.

The vertices of fragmented meshMF are given by

x
F
i = sdi +Rin

d
i . (3)
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Figure 6: Skeleton-based variational mesh deformation

framework. First fragmented mesh (triangle soup) MF is

generated from deformed skeletal mesh Sd . Then differential
coordinates are used for stitching the triangles ofMF .

Our task now is to reconstruct a deformed mesh Md

from fragmented mesh MF , as seen in Fig. 6. One possi-
ble solution [KO03] consists of generating vertex positions
xdi ∈ Md via simple averaging the positions of the corre-
sponding vertices of the the fragmented meshMF . While
this approach seems attractive because of its simplicity, bet-
ter reconstruction results are usually achieved when differ-
ential mesh coordinates are employed for the reconstruc-
tion [YZX∗04, ZRKS05, ZHS∗05]. Further, the use of dif-
ferential coordinates allows us to easily take into account
the influence of the deformed skeletal mesh Sd .

Consider the graphs G and GF composed from the pairs
of meshes {M,S} and {MF ,Sd}, respectively. The con-
nectivity structures of G and GF are shown in Fig. 7.

Let us equip the edges of G and GF with weights. Each

c© The Eurographics Association and Blackwell Publishing 2007.
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Figure 7: Graphs G (left) and GF (right).

edge (xi,x j) of G is assigned with the standard cotan weight
w(xi,x j) = cotαi j+cotβi j [PP99] where αi j and βi j are the
angles opposite to (xi,x j) inM, as seen in the left image
of Fig. 7. The edges connecting (xi,si) are assigned with
the unit weights w(xi,si) = 1. For a triangle (xFi x

F
k x
F
j ) of

GF , the triangle edge (xFi ,x
F
j ) is equipped with the weight

w f (x
F
i ,x
F
j ) = cot∠xixkx j where the angle is measured in

M. The edges connecting (xFi ,s
d
i ) are assigned with weights

w(xFi ,s
d
i ) = 1/Ni, where Ni is the number of the one-link

neighborhood triangles of xi inM.

Once G and GF become weighted graphs, the graph-
Laplacians of G and GF are appropriately defined [Chu97].
Let L be the Laplacian matrix ofM. Then the list of ver-
tices xd = {xdi } of the deformed meshMd is determined
from xF = {xFi } and s

d = {sdi } by solving

L

[

xd

sd

]

≡

(

I+L −I
0 I

)[

xd

sd

]

=

[

y

sd

]

, (4)

where the list of vertices y= {yi} is generated from the ver-
tices of GF by

yi = ∑
( j,k)

w1(x
F
i −x

F
j )+w2(x

F
i −x

F
k )+

xFi − s
d
i

Ni
.

Here the sum is taken over the set of index pairs ( j,k) cor-
responding to the edges ofM opposite to vertex xi ∈ M,
w1 = cot∠xixkx j, w2 = cot∠xix jxk.

Notice that y can be considered as the result of applying
the graph-Laplacian of GF to the vertices ofMF .

One can easily see that the vertices xd obtained from (4)
depend only on xF , the vertices of the fragmentedMF , and
can be determined by solving a simpler sparse linear system

(I+L)xd= ỹ, ỹi=∑w1(xFi −xFj )+w2(xFi −xFk )+
xFi
Ni

. (5)

However, as we will see later, the operator L in (4) turns out
to be very useful for removing possible self-intersections of
Md .

Multi-resolution representation. In order to process large-
size models and accelerate our mesh deformation tech-
nique we have implemented a Displaced Subdivision Sur-
face (DSS) approach of [LMH00] (without its computation-

ally expensive optimization stage). The skeletal mesh is ex-
tracted from the coarse DSS control mesh. Then the con-
trol mesh is deformed as described above. Finally, fine shape
features are reconstructed by subdividing the deformed con-
trol mesh and adding displacements along the normals of the
subdivided deformed mesh.

In Fig. 8, we demonstrate advantages of using DSS. In ad-
dition to a great acceleration of the deformation process, the
DSS control mesh has a much simple skeleton which pro-
vides the user with a better control for global shape defor-
mations.

Dense mesh and its corresponding skeletal mesh

DSS control mesh and its skeletal mesh (5.2K triangles)

Number of Editing Updating
DSS Total

Triangles Skeleton Geometry

346K 94 s 1023 s 1117 s
DSS 5.2+332K 0.13 s 0.3 s 3.8 s 4.23 s

Figure 8: Adding a multi-resolution mesh representation

(we use a simplified version of DSS of [LMH00]) greatly

accelerates the deformation process and simplifies the user

control. The table presents timing measurements corre-

sponding to the mesh deformation shown in Fig. 1.

4. Removing mesh self-intersections

The deformed mesh Md approximates the envelope of
spheres centered at Sd and may contain self-intersections, as
seen in the left image of Fig. 9. A natural way to avoid such
self-intersections is to consider the boundary of the boolean
union of the balls bounded by the spheres, as seen in the

c© The Eurographics Association and Blackwell Publishing 2007.
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right image of Fig. 9. The boolean union can be described
by a function

f (z) =min
i

{

z ∈ R
3 : |z− sdi |−Ri, s

d
i ∈ Sd

}

(6)

and the boundary of the union is given by the equation

f (z) = 0. (7)

Therefore it seems natural to resolve self-intersections of
Md by moving its vertices towards (7).

Figure 9: Envelope vs. Union. Left: the envelope of a family

of spheres. Right: the boundary of the union of the corre-

sponding balls.

Consider the graph G(t) composed from the vertices x =
{xi} and s

d = {sdi } of moving meshM(t) and the deformed
skeleton Sd , respectively. In order to move M(t) towards
(7) we use the antigradient of 12 f

2 and evolve the graph by

∂[LG(t)]

∂t
= F (G(t)) ≡

{

− f (z)∇ f (z) if z= xd

0 if z= sd
(8)

where the evolution starts from the deformed mesh and its
skeleton G(0) = (Md ,Sd) and L is defined in (5) and re-
mains constant during (8). Note that the skeletal mesh Sd is
also not affected by (8) but serves as an anchor forM(t).

To solve (8) numerically we consider the following semi-
implicit scheme

u
n+1 = un+ τL

−1
F(un), (9)

where u0 = (xd ,sd) and τ is a step-size parameter. The ma-
trix L−1 is already computed† when (4) was solved and re-
mains the same during the above graph evolution (9).

Resolving mesh self-intersections by applying an ap-
propriately defined mesh evolution was previously used in
[YBS03]. Our mesh evolution scheme (9) is simpler than
that employed in [YBS03]. In addition, (9) treats the vertices
of the skeletal mesh Sd as anchors and prevents developing
defects similar to that shown in the left image of Fig. 10.

† Sparse direct solver [Dav04] is employed to compute L−1.

Figure 10: Preconditioning with L
−1
in (9) allows us to

avoid defects similar to that shown in the left image. Such

defects appear because of a discrete nature of our approxi-

mation to the envelope of spheres. Skeletal mesh Sd serves
as an anchor in (9) and a correct approximation of the enve-

lope is achieved, as seen in the right image.

The power of our approach to resolve mesh self-
intersections is demonstrated in Fig. 11. Note that mesh evo-
lution (9) improves the accuracy of the deformed mesh by
pushing it towards the boundary of the union of the medial
balls (an example of such a union is shown in the right image
of Fig. 9).

Figure 11: Global self-intersection fairing. Left: a deformed

mesh contains self-intersections. Right: evolution (9) effi-

ciently removes the self-intersections.

A straightforward computation of (6) and, therefore, the
right-hand side of (9) is time-consuming. In order to accel-
erate discrete evolution (9) we simplify (6) by considering a
proper subset of the medial balls centered at the vertices of
Sd .

Let us observe that for each vertex ui = {xi,s
d
i } of G(t)

the value f (xi) is bounded by
∣

∣

∣
|xi− s

d
i |−Ri

∣

∣

∣
. Thus it is nat-

ural to approximate the antigradient of 12 f
2 at xi by

− f (xi)∇ f (xi) ≈
(

|xi− s
d
p|−Rp

)(

xi− s
d
p

)

,

p= argmin j
{

|xi− s
d
j |−R j|

}

(10)

and the minimum is taken over all u j = (x j,s
d
j ) such that

|x j−xi| ≤ Ri. For fast evaluating (10) a kd-tree search struc-
ture is constructed and updated after each iteration of (9).

If a model has a complex geometry (e.g., a deformed Ar-
madillo mesh), flow (9) is applied to the DSS control mesh
of the model. For a simple model, like the ellipsoid from
Fig. 9), the flow is applied to the model itself.

c© The Eurographics Association and Blackwell Publishing 2007.
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Figure 12: A comparison of SSD [MTLT88,LCJ94] and our

skeleton-based variational approaches. Left: original shape

(an ellipsoid). Center: SSD is applied. Right: our method is

used.

Of course, if (9) is applied to the DSS control mesh of
a model, one cannot guarantee that all intersections of the
model will be removed by (9).

According to our numerical experiments, typically 10-
50 iterations of (9) are needed to remove self-intersections
and improve the mesh quality. Our implementation of (9) is
reasonably fast. For example, it takes only 0.16s per itera-
tion for the ellipsoid mesh from Fig. 12 (4.9K triangles) and
0.12s per iteration of the DSS control mesh of the Armadillo
model. ‡

5. Discussion

The two main advantages of our mesh deformation method
are preserving the thickness of the deformed models and
an elegant geometric way for removing possible mesh self-
intersections. To the best of our knowledge, the latter is-
sue is very rarely addressed in the shape deformation liter-
ature. Both the advantages are natural consequences of the
skeleton-based shape representation in which a given sur-
face is represented as the envelope of spheres centered at the
skeleton of the figure bounded by the surface.

In Fig. 12, we use a simple shape (an ellipsoid) to compare
with the SSD technique [MTLT88, LCJ94], an axial-based
shape deformation approach. In Fig. 13, the same model is
used for a comparison of various techniques for shape re-
construction from a deformed skeleton.

Thickness preservation, an intrinsic property of our ap-
proach, is missed by most of the modern non-skeletal shape
deformation techniques (as far as we can judge, only the
rigid cell approach proposed [BPWG07] is capable to pre-
serve thicknesses of deformed models). Several methods de-
liver volume-preserving deformations [ZHS∗05,FTS06].We
think, however, that for many applications preserving the

‡ All the computations described in this paper were performed on
a 1.7GHz Pentium 4 with 1GB RAM.

(a) (b) (c)

(d) (e) (f)

Figure 13: A comparison of several popular schemes for

computing a deformed shape from a deformed skeleton.

For each deformed mesh, the computational time is given

in seconds and surface approximation error ε is measured

by summing up the values of (6) computed at the vertices

of the deformed mesh. (a): Ellipsoid and its skeletal mesh

(19.6K triangles). (b): Deformed skeletal mesh. (c): SSD

method [MTLT88, LCJ94], 2.3s, ε = 20.2. (d): Homotopy
method [YBS03] (no DSS acceleration), 2.7s, ε = 19.6. (e):
Weighted blending [Blo02], 14.8s, ε = 11.8. (f): The method
of this paper (no DSS acceleration) 2.9s, ε = 3.8. Evolution
(9) decreases the approximation error: ε = 0.2.

thicknesses of a deformed model is a desirable feature which
can provide the user with a simple and intuitive control over
the deformation process.

To compare with previous skeleton-based shape deforma-
tion methods, we believe that our approach provides the
user with a richer set of deformations than line-skeleton
techniques [LKA06, YHM06] and delivers a better preser-
vation of shape features under larger-scale deformations
than other schemes based on the classical Blum skeleton
[YBS03,DQ04]. See, for example, Fig. 13 for a comparison
of our approach with that developed in [YBS03].

While PriMo [BPGK06], rigid cells [BPWG07], and Vol-
umetric Graph Laplacian [ZHS∗05] techniques are capable
of avoiding local self-intersections, only vector field based
approaches [ACWK06,FTS06], and another skeleton-based
deformation method [YBS03] are our competitors in the
ability to avoid global mesh self-intersections. To compare
with [YBS03] our self-intersection fairing flow (8), (9) is
very fast.

Of course our method is not free from drawbacks. Some

c© The Eurographics Association and Blackwell Publishing 2007.
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deformation defects can be observed on the left leg of the
Homer model and the neck of the Stanford Dragon. (For the
Homer model, they are especially visible because the mesh
does not contain high-frequency details which usually pro-
duce a masking effect.) The problem here is that the skeleton
of a canal surface degenerates into a space curve. In practice,
the skeletal mesh of a model close to a canal surface is of a
poor quality and certain instabilities may appear during our
mesh reconstruction process.

Figure 14:More deformation examples. Certain defects can

be observed on the left leg of the Homer model and the neck

of the Stanford Dragon.

Our approach would be greatly enhanced if we were given
a method for generating bending deformations (i.e., preserv-
ing the first fundamental form) of the skeletal mesh. Then,
as shown in Appendix A, the first fundamental form ofM
(and, therefore, the surface area element) is also preserved
in the deformation process. In addition, several global char-
acteristics of a figure bounded byM are bending invariants
of the skeleton S of the solid [Dam07, Nád68]. While pro-
ducing pure bending deformations of a surface seems a diffi-
cult nonlinear problem, its approximate solution in the case
of the skeleton does not look very hard. Everyone who deal
with skeletons should observe that S in its regular points
is much less curved than M in the corresponding points.
Roughly speaking, the deformation retractM→S converts
highly curved regions ofM into singularities of S. Although
so far this observation is supported by rigorous mathemat-
ical statements in 2D case only (see Appendix B), results
of [SSR99] suggest that the observation is mathematically
valid in 3D as well.
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Appendix A. Simple geometry of sphere envelopes

Consider a smooth two-parameter family of spheres, a con-
gruence of spheres, in 3D. Let the surface of sphere centers
be given in a parametric form s= s(u,v) and R= R(u,v) be
the radius function. Consider an envelopeM of the sphere
congruence [s,R]. The envelope allows for a natural param-
eterization

x(u,v) = s(u,v)+R(u,v)n(u,v),

where n(u,v) is the outer (w.r.t the surface of centers) unit
normal of the envelope. See Fig. 4 for an illustration. Basis
vectors

xu = su+Run+Rnu and xv = sv+Rvn+Rnv (11)

are orthogonal to n. Thus, taking the scalar product of (11)
and n, we arrive at

su ·n= −Ru and sv ·n= −Rv. (12)

Denote bym the orientation normal of the surface of centers
s(u,v). We have

n= αsu/|su|+βsv/|sv|+ γm (13)

where the direction-cosines α and β are obviously obtained
from (12). The remaining direction-cosine γ is easily com-
puted from (13). Thus the direction-cosines of n depend on
the coefficients of the first fundamental form ds2 of the sur-
face of centers s(u,v) and first-order derivatives of the radius
function R(u,v) along the parametric curves. In particular it
means that, for each sphere of the family, the point of contact
between the sphere and envelope depends on ds2 and Ru, Rv
only. Further, the area element of the envelope

(su+Run+Rnu)× (sv+Rvn+Rnv)

also depends on ds2 and derivatives of R(u,v) along the para-
metric curves of s(u,v).

Appendix B. Curvature of the skeleton in 2D

Let C be a closed curve oriented by its outer unit normal n
and S be the skeleton (medial axis) of the figure bounded
by C. Consider the negative offsets of C: Cλ = C − λn. It
is well-known that skeleton S is generated by the first self-
intersections of Cλ. Consider a non-singular point p∈S gen-
erated as a self-intersection of Cλ for a certain value of offset
parameter λ and denote by ϕ the angle between one of the
tangents of Cλ and the tangent of S at p. Direct computa-
tions [Sie99] show that the curvature κ of S at p is given by

κ =
1
2

(

k1

1−λk1
−

k2

1−λk2

)

cosϕ, (14)

where k1 and k2 are the curvatures of C computed at the
points q1 and q2 corresponding to p, respectively. Equation
(14) implies that

2κds= k1 ds1− k2 ds2, (15)

where ds1 and ds2 are the oriented length elements of C at
q1 and q2, respectively, and ds is the oriented length element
of S at p.

Denote by S′ a set of smooth curve segments obtained
from the double skeleton S̃ by removing its singular points.
From (15) it follows that

Z

S′

|κ|ds≤
Z

C
|k|ds

which means that S′ is less curved than C.
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