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Abstract

The crest lines, salient subsets of the extrema of the principal curgatues their corre-
sponding curvature lines, are powerful shape descriptors whictvidedy used for shape
matching, interrogation, and visualization purposes. In this paper, walagetast, accu-
rate, and reliable methods for detecting the crest lines on surfacesxappted by dense
triangle meshes. The methods exploit intrinsic geometric properties of thatatevex-

trema and provide with an inherent level-of-detail control of the detectest ines. As an
immediate application, we use of the crest lines for adaptive mesh simplificatipogas.

Key words: ridges, crest lines, focal surfacespblus-invariant energies, surface
Laplacian

1 Introduction

Previous work. Surface creases, curves on a surface along which the surface
bends sharply can be intuitively defined as loci of sharpatem points of the sur-
face normal. Mathematically the sharp variation pointshef surface normals are
described via extrema of the surface principal curvatul@sgtheir corresponding
lines of curvature. The full set of such extrema, frequetiyled ridges (Porte-
ous, 1987), corresponds to the edges of regression of thedogras of the surface
normals and was first studied by A. Gullstrand in connecti@h Ws work in oph-
thalmology (1911 Nobel Prize in Physiology and Medicinehc® then the ridges
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and their subsets have been thoroughly studied in conmewith research on clas-
sical differential geometry and singularity theory (Koendk, 1990; Belyaev et al.,
1997; Cazals and Pouget, 2004b, 2005), and they were frdgueet for shape in-
terrogation purposes (see, for example, (Hosaka, 1992, B4y, (Hallinan et al.,
1999, Chap. 6), (Porteous, 1994, Chap. 11), and referencesrtheAlso numer-
ous applications in image and data analysis (Monga et &2)1Quality control
of free-form surfaces (Hosaka, 1992), human perceptiorif(hkbon and Richards,
1985), analysis and registration of anatomical struct(ifesinec et al., 2000), ge-
omorphology (Little and Shi, 2001), and non-photoreatiséndering (Interrante
et al., 1995; DeCarlo et al., 2003) have been proposed. Thaltexd crest lines
(Thirion et al., 1992) are formed by the perceptually sdlrege points and consist
of the surface points where the magnitude of the largestl{golate value) prin-
cipal curvature attains a maximum along its correspondimg of curvature. The
ridges possess many interesting properties. In particilay can be defined as the
loci of surface points where the osculating spheres have-biider contacts with
the surface and, therefore, the ridges are invariant umdersion of the surface
w.r.t. any sphere (Porteous, 1987). The ridges can be alwied as the surface
curves corresponding to the cuspidal edges of the two fagdhses (Porteous,
1994, Chap. 11).

Practical detection of the crest lines and other types optiveipal curvature ex-
trema is a difficult computational task because it requiregh-quality estimation

of the principal curvature tensor and curvature derivativie general, global fitting
methods are supposed to do a better job in estimating hidérsurface derivatives
and, therefore, to allow for achieving more accurate deiraif surface curvature
features (Kent et al., 1996; Ohtake et al., 2004) than lost@ih@tion schemes. On
the other hand, the local schemes are much faster and oftenrddrate a quite
satisfactory performance (@aiec, 1993; Stylianou and Farin, 2004; Cazals and
Pouget, 2004a).

The vast majority of the local schemes for detecting thetdirgss can be separated
into those based on local polynomial fitting (Cazals et al0620b; Kim and Kim,
2006; Yoshizawa et al., 2005) and schemes based on disdifetemtial operators
(Hildebrandt et al., 2005). While estimating surface cuwmas and their deriva-
tives with geometrically inspired discrete differentigdevators (Hildebrandt et al.,
2005; Rusinkiewicz, 2004; Yoshizawa et al., 2007) is moega&ht than using fitting
methods. The former usually requires noise elimination twedatter seems more
robust. On the other hand, as pointed out in (Rusinkiewif942, fitting methods
incorporate a certain amount of smoothing in the curvataceaurvature derivative
estimation processes and that amount is very difficult tarobmAnother limitation
of fitting schemes consists of their relatively low speed ampare with discrete
differential operators. Further, since predefined locahpives are used for fitting,
one cannot expect a truly faithful estimation of surfacéedéntial properties.

Our geometry-based finite difference method (Yoshizawa €2@07) exploits geo-



metric relationships between a given surface and its fagéhses, namely between
the derivatives of the principal curvatures along theiresponding curvature lines
and the area elements of the focal surfaces. The idea to opergies of focal
surfaces for detecting principal curvature extrema wasipusly considered in
(Lukacs and Andor, 1998) and (Watanabe and Belyaev, 2001). Tpa@nwith
these previous works where only basic qualitative connastbetween geometries
of the surface and its focal set were considered, a deepatitptave understanding
of the relationships was used (Yoshizawa et al., 2007).

Our contribution.  In this paper, we revise, enhance, and test three recent tech
niques for detecting and drawing the crest lines on surfappsoximated by dense
triangle meshes:

(@) the local polynomial fitting scheme of (Yoshizawa et 2005);

(b) an adapted and modified version of the general finiteeifice curvature ten-
sor fitting approach of (Rusinkiewicz, 2004);

(c) the focal surface based technique of (Yoshizawa et@D7R

Our general procedure consists of three phases:

(1) estimating the principal curvature tensor and cunatierivatives,
(2) tracing the crest lines, and
(3) efficient thresholding of the lines.

For the first phase, we use a new focal surface based finitereliite scheme
(Yoshizawa et al., 2007) and appropriately modified versioha local polyno-

mial fitting scheme of (Goldfeather and Interrante, 2004) arcurvature tensor
fitting scheme of (Rusinkiewicz, 2004). For the second phasedevelop and use
an enhancement of the zero-crossing curvature-extremuecti®n procedure of
(Ohtake et al., 2004). Our crest line thresholding stratmysists of penalizing the
crest line points in surface regions close to Dupin’s cyelghtches (every point
of a Dupin’s cyclide is a ridge point and, therefore, the the®s are not defined
properly there). Finally we consider applications of thestiines to adaptive mesh
simplification.

While (c) demonstrates the fastest performance and deleysgood results for
dense noise-free meshes, (a) achieves the highest acamaryg the approaches,
The tensor fitting approach (b) occupies an intermediat@ipodetween (a) and
(c). It is worth to mention here that (c) is a pure geometrarad without a doubt
has a greater mathematical elegance then (a) and (b).

Paper organization. The three approaches we present in this paper use the same
zero-crossing curvature-extremum detection procedutdgka et al., 2004), the



same procedure for tracing the detected crest lines (Yashizt al., 2005), and
very similar thresholding/filtering schemes. So we do natcti®e the approaches
separately. In Section 2 we present a collection of mathiealaesults needed for
(@), (b), and (c). Section 3 describes curvature and cumwautremality estima-

tion schemes corresponding to the approaches. Sectiors 3 ae devoted to the
crest line tracing and thresholding stages, respectirelgection 6 we consider an
application of crest lines to feature preserving mesh dation. We compare the
approaches, reveal their strong and week sides, and canicligkction 7.

2 Differential Geometry Background

Crest lines, ridges, focal surfaces, and Dupin cyclides.Consider a smooth ori-
ented surface& given by radius-vector and denote by:,,,.. andk,,;, its maximal
and minimal principal curvature,, ., > kun. Let t,.. andt,,;, be the corre-
sponding principal directions. Denote by, ande;, the derivatives of the prin-
cipal curvatures along their corresponding curvaturesations:

€max = akma,x/atmaxa €min = 8]'{:rnin/atmin- (l)

Following (Thirion, 1996) we calt,., ande,;, theextremality coefficient$Strictly
speaking, the extremality coefficients are not defined authbilical points (the
points wherék,.., = kmin) Since the principal directions are undefined there. The
ridges are formed by the closure of points®where one of the extremality coeffi-
cients vanishes. According to this definition, the umbllfmaints can be considered
as ridge points. In (Porteous, 1994, Hallinan et al., 1988)idge patterns in small
vicinities of umbilical points are analyzed.

The crest lines consist of perceptually salient ridge moiide distinguish convex
and concave crest lines. The convex crest lines are given by

€max — Oa 88max/atmax < Oa kmax > ’kmin|7
while the concave crest lines are characterized by
€min — 07 88min/atmin > 07 kmin < _‘kmax‘-

The convex and concave crest lines are dual w.r.t. the udaentation: changing
the orientation turns the convex crest lines into concaweam vice versa.

Denote byF the focal set ofS. The focal set is formed by the principal centers
of curvature and consists of two focal surfaces correspantb the maximal and
minimal principal curvatures

fax =T+ 0/kpnae and £, =1+ n/kyin.



The focal surface§, ., andf,,;, have singularities which, in the generic case, con-
sist of cuspidal edges, space curves corresponding todgesionS, and isolated
point singularities (Figure 1 demonstrate the focal sw$aaf an ellipsoid).

The crest lines form a subset of the ridges and correspondrtaic parts of the
cuspidal edges of the focal surfaces. The ridges and, tirerethe crest lines are
not defined properly on the Dupin cyclides, special surfadesh can be charac-
terized by the condition that both their focal surfaces degate into space curves
(Eisenhart, 1909§132). The Dupin cyclides were introduced by French geome-
ter Charles Dupin at the beginning of the 19th century andesthen have been
intensively studied in connection with various shape miodefasks (see, for ex-
ample, (Chandru et al., 1989), (Foufou and Garnier, 2004) references therein).
Figure 2 shows typical Dupin cyclides.

Figure 1. The focal surfaces of an ellipsoid.

Figure 2. Dupin cyclides - surfaces without ridges.

One can show that the Dupin cyclides are characterized bgahdition
emax = 0 = emimn  OF, equivalently, |emax|” + |emm|” = 0. (2)

Notice that the left-hand side of right-most equation ini$2he integrand of the so-
called MVS functional introduced in (Moreton an@d@uin, 1992) for fair surface
design purposes.

There are interesting relations between the extremaligffmientse,,., and ey,
and area elements of the two focal surfaf;gs andf,,;,. Namely, letn,,,,, andn,;,,
be the orientation normals @f.. andf,;,, respectively. Denote b, ..« and
Doinnnin form the oriented area elements fyf,. andf,;, (i.e., Dy and Dy,
are the determinants of tiex 2 matrices composed of the coefficients of the first



fundamental forms of,,,., andf,,;,), respectively. Then

3 3
kmaxDmaX S — kmianin . (3)
L max €minbmin = L L min -
min min — max

6maxtmax - k’
max ~

It is worth to observe that (3) implies simple relations be#w the surface principal
directionst,, ., tmin and normals,, .., n..;, Of the focal surface$, .x, finin. The
relations were recently used as key ingredients of a novetogeh to robust es-
timating the principal directions and curvatures of trialaged surfaces (Yu et al.,
2007).

A proof of (3) can be found, for example, in (Weatherburn, 1,.975). Below we
give our own simple proof of these formulas. In a small viiref non-umbilical
point of S let us consider the lines of curvature parameterized by #reilengths.
Then the surface is locally represented in parametric foemr(u, v) for which

r, = tmaxa r, = trnim n, = _kmaxtmam n, = _kmintmin-
Consider now a generalized focal surface
f =r(u,v) + R(u,v)n(u,v). 4)

SubstitutionsR = Ryax = 1/kmax @aNdR = Ry = 1/knin give us the standard
focal surfaced,,.. andf,,;,, respectively. The oriented area eleménk f, of (4)
is

_Ru (1 - R/Rmin) tmax - Rv (1 - R/Rmax) tmin + (1 - R/Rmax> (1 - R/Rmin) n
and (3) immediately follows.

Formulas (3) explain the “focusing” effect of each focalfaoe near its edges of
regression: the area element of a focal surface degenecareso at the edges of
regression. This observation was used in (@ec&kand Andor, 1998; Watanabe and
Belyaev, 2001) for detecting creases on meshes. In our,steelgmploy the full
power of (3).

Principal curvatures and their gradients from surface Laplacian. Itis widely
known that

ASr - (kmax + kmin) n, (5)

wheren is the orientation normal for a smooth surfacand Ag is the Laplace-
Beltrami operator (the surface Laplacian). It is much lassvin that

gt = = (B K 1 s s+ ) ©



whereV 5 stands for the surface tangential gradient operator. Afyb(6) can be

found in classical differential geometry textbook (Weakhen, 1927 §119) whose

author considered this formula as a key ingredient of hi¢aservector analysis
approach (Weatherburn, 1930).

Given a good approximation of the normaand Laplace-Beltrami operatdys for
a surface approximated by a mesh, one can estimate thepairmtirvature tensor
and the surface gradients of the principal curvatures aswsl Note that (5) and

(6) imply

ASr n= kmax + kmina Asl’l n = - (kr2nax + kfnin) (7)
and the principal curvatures are determined directly fr@in Now one can build
meshes approximating the focal surfaces and use (3) toastime principal direc-
tions and extremality coefficients. Finally, if necessémg remaining derivatives of
the principal curvatures can be estimated from (6).

Curvature extremalities for implicit surfaces. It seems well known that for a
surface given in implicit form#'(x) = 0, x = (x1, 22, x3), extremailty coefficient
e = 0k /0t is given by

Fijltitjtl + 3/€FUthj
[VE| ’

e=Vk-t= (8)

whereF;; andF}; denote the second and third partial derivativeg'¢k), respec-
tively, t = (1, t2, t3) is the principal direction corresponding to a principalvasr
turek, n = (ny, ny, n3) is the unit surface normal, and the summation over repeated
indices is implied. In its present from, (8) is derived in (Beev et al., 1998). See,
for example, (Porteous, 1994, Exercise 11.8) and also (Mat@l., 1992) where

a small mistake in the final formulas for the curvature deiwes is made.

Assume now that the coordinates are chosen such that tha ofigoordinates is
situated on the surface and the coordinate vectors coineitiethe framet,,.,
tmin, @andn. Then our surface is given locally in the Monge form = h(z,y)
with
1 2 2 1 3 2 2 3
h(z,y) = §(b0x + 201y + boy”) + 6(00:17 + 3127y + 3eazy” 4+ c3y”)  (9)
1
+ ﬁ(do:c4 + 4dy 2y + 6do®y? 4 ddsay® + dyyt) + ...

Straightforward computations show that, in this particalase, (8) simplifies into

€ = 8k/8t = Fijltitjtla (10)



where, as before, the summation over repeated indices usnass Now (9) and

(10) give
T
t% Co C1 tl
e =0k/0t = ( ) ( ) ( ) (11)
t% Cy C3 t2

at the local origim.(0, 0) wheret = (¢4, t5) is the principal direction corresponding
to principal curvature.

It is interesting to compare (11) with the derivative-ofnature tensor

()

derived in (Rusinkiewicz, 2004) (see formula (8) there)e Terivative of curvature
in directiont is given by

t2 ! a3b) [t
C(t,t,t) = p wa (13)

which is equivalent to (11) withy = a, ¢; = 3b, ¢o = 3¢, andes = d.

Invariance properties of curvature extrema. It is not difficult to show that
the ridges, the full set of the extrema of the principal ctuwas along their cor-
responding curvature directions, aréblus-invariant (i.e., scale-independent and
inversion-invariant). Indeed, they are obviously scalariant and their invariance
w.r.t. the inversions can be easily verified by direct comafiahs.

Consider surface obtained fromr by inversion w.r.t. the sphere of radiusen-
tered at the origin of coordinates

T =c’r/r? r*=r-r.
Then the length elements pfandr are related by
ds = c*ds/r?. (14)

Direct computations (Weatherburn, 192%82-83) show that the principal curva-
tures ofr are given by

~ r? 2 ~ 2 2
kmax = _gkmax - 0721' -, kmin = _gkmin - gr -n (15)



and the curvature lines af are mapped onto the curvature linesrofOne can
observe that (14) and (15) imply thedWius-invariance of the differential form

(kmax - kmin)2dA

corresponding to the well-known Willmore energy (Willmpg8€00). The Willmore
energy measures deviation from sphericity and is curremtbubject of intensive
research in differential geometry (Hertrich-Jeromin, 208nd geometric modeling
(Bobenko and Sclider, 2005); see also references therein.

Now differentiatingk,,. andk..:, in (15) along their corresponding curvature lines
and using the Rodrigues’ curvature formula gives a new ardpected result

(32 ~ a/;max 7"2 62 - a];Jmin 73
ot == == _Cjemin (16)

— 5 €max, — €min
C2 7«2

— €max =
7"2

and the inversion-invariance of the ridges follows.
Using (16) we arrive at
Emaxd3® = —Cmaxds®,  Eqmind3® = —eminds® (17)

and can easily construct a number obbMus-invariant differential forms:

\/ |emax| + |emin‘ d57 (18)

e?nax + erznin dAa \/ |emax€min| dA; |6max|dA, ‘emin|dA7 (19)
ez dA e dA €maxCmin AA

(kmax - kmin>27 (kmax - kmin)2’ (kmax - kmin>27
whereds anddA are curve-on-surface arc-length and surface area elepents
spectively.

(20)

Some of these Mbius-invariant surface-based differential forms werelsd be-
fore. For example, in (Ferapontov, 2000) it was shown thataist term of (20) is
also offset-invariant, i.e. invariant w.r.t shifting eastirface point to a fixed dis-
tance along the surface normal direction at that point. Sotiers seem to be new
although they can be obtained from a complet@dlis invariant system derived in
(Wang, 1992).

It is worth to notice a similarity between thedius-invariant surface energy

/ / Y €2 ax T Cimin dA

corresponding to the first differential form in (19) and th&/Blfunctionals

// (efnax +efmn) dA and // (61211ax+612mn) dA / dA



introduced and studied in (Moreton anddgiin, 1992; Joshi ande§uin, 2007).

In our study, we will use (18) for selecting perceptuallyiesad subsets of the crest
lines.

3 Practical Estimation of Surface Curvatures and Curvature ExXremalities

Given a triangle mesiM approximating a smooth surfacg our first task is to get
an accurate and robust estimation of the surface normaln@uerical experiments
suggest that a simple method of (Max, 1999) is a very goodcehoi

Since the curvature extrema are very sensitive to even shafle variations, it is
a good idea to apply first a simple parameter-free smoothioggalure. As we will
see later, it is not really necessary but leads to more \ispdasant patterns of
the crest lines. Namely, motivated by (Taubin, 2002), wesater the dual mesh
consisting of the triangle centroids @#1 and construct an auxiliary mesh whose
vertices are the centroids of the polygons composing thérdaah. The auxiliary
mesh inherits the connectivity g¥1.

The principal curvatures, principal directions, and thevature extremalities are
estimated at the auxiliary mesh vertices via one of the Walig three schemes:
local cubic polynomial fitting (Yoshizawa et al., 2005), adifeed version of the

tensor fitting procedure of (Rusinkiewicz, 2004), and theafcsurface based fi-
nite difference scheme (Yoshizawa et al., 2007). Then testdines are traced on
M by using the corresponding curvature tensor and extreynadfficients of the

auxiliary mesh.

Local cubic polynomial fitting. In our numerical experiments we use an en-
hanced version of the adjacent-normal cubic approximatiethod of (Goldfeather
and Interrante, 2004). The cubic polynomial given by thétrigand side of (9) is
fitted in the least-square sense (Goldfeather and Intexr20604) to each auxiliary
mesh vertex and a set of its neighboring vertices. That se¢igihbors is obtained
from the k-ring neighborhoodX = 1,2, 3, 4) of the auxiliary mesh vertex by re-
moving those vertices whose normals make obtuse anglestivathormal at the
auxiliary mesh vertex.

Then the curvature tensor and extremality coefficients arveld using (9) and
(11). Finally these curvature attributes are assigneddmtlyinal vertices of mesh
M.

Figure 3 compares the sets of crest lines detected on a 3hestt via the straight-
forward polynomial fitting (the top image) and the enhanagid@nt-normal cubic
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approximation method (we use one-ring neighborhood ingk&nple).

Although our scheme for estimating surface derivativessesomplicated, it leads
to highly effective crest line detection procedure whichyoslightly depends on
the mesh connectivity and triangle aspect ratios. Figutteodvs crest line patterns
found on simple and complex geometrical models for varicaisies of a user-
specified parameter which controls the strength of detewtest lines.

In Figure 5 we compare the patterns of the crest lines detemtethe original

Stanford bunny mesh and on the mesh obtained via an impétibin of the bunny
model and then polygonizing it using (Bloomenthal, 1994gspite the fact that
the new bunny mesh contains many sliver triangles and hegular connectivity,

the patterns of the crest lines found on the meshes are rabigrgimilar.

4

Figure 3. Crest lines detected on 3D text. Top: polynomial fit without prelingieatima-
tion of mesh normals is used. Bottom: the enhanced adjacent-normal cubixiapgtion
method is employed for estimating surface curvatures and their derivatives

Curvature tensor fitting scheme. We use a simple modification of the scheme
of (Rusinkiewicz, 2004) for estimating,,., ande,,;,. First we use the scheme to
estimate the principal curvatures and principal direiddext we transform the
coordinate system so that the axes in the tangent planeideingth the surface
principal directions and, therefore, (9) simplifies into

1 1
W, y) = 5 (Kot + Fniny”) + = (G02” + 3012%y + 36ay” + Gy”) + ., (21)
where straightforward computations give

€max = Co and €min = C3. (22)
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Figure 4. Crest lines detected on various triangle meshes. A scale-imtigeparameter
T, of (24) is used to keep the most visually important features. For all the noogeling
neighborhood polynomial fitting is used for estimating the curvature tensbexmnemali-
ties.

/

Figure 5. Patterns of crest lines and mesh triangles for two bunny modgsofiginal
Stanford bunny mesh with 69,451 triangles is used. Bottom: another bunny wits
279,984 triangles is used. The necessary surface derivativestamated via the enhanced
cubic polynomial fitting with one-ring neighborhood for the original Stanfoudiny mesh
and three-ring neighborhoods for the remeshed bunny since the latteréstham three
times bigger than the original one.

Then the derivative-of-curvature tensor (12) is computadally, taking into ac-
count (11), (13), (21), and (22) we arriveat,, = a ande,,;, = d wherea andb
are defined in (12). In our numerical experiments, we usergragodes accompa-
nying (Rusinkiewicz, 2004).
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Focal surface based finite difference scheme.Once the normals at the auxiliary
mesh vertices are estimated, the discrete principal cureatare obtained from (7)
where the standard cotan formula (Pinkall and Polthier3198eyer et al., 2003)
is used to approximate the Laplace-Beltrami operator.

Now we are ready to build meshés, .., Fui, discrete counterparts of the focal
surfaced,..«, fiin, and estimate the principal directions., t.;, and extremali-
ties enax, Emin Via (3). The discrete focal meshés,., and F,,;, for the auxiliary
mesh are built and their normals,., andn,,;, are computed according to (Max,
1999).

In practice, if|kmax| > |kmin| We Settmax = Niax aNdt,, = n X ny,,,. Otherwise,
tmin = Nnin andtmax = Npip X N.

The oriented area element at a vertesf F.,... (Fuin) iS Obtained by averaging the
oriented areas of adjacent triangles. Namely, only thaaedtes(v, v;, v, 1) from
the 1-ring neighborhood of contribute to the oriented area element afor which
kmax (kmin) has the same sign at the corresponding verticegtoiVe use this cur-
vature sign restriction condition in order to avoid troubiegith the parabolic lines
on r where the corresponding focal surfaces go to infinity. Altfjo according
to their mathematical definition, the crest lines stay asifitheir corresponding
parabolic lines, the above condition contributes to nuoatrstability of our ap-
proach. Figure 9 demonstrates the resulting crest lineswidocal surface based
finite difference scheme.

4 Tracing Crest Lines

Once the principal curvature tensor and extremality caefiiis are estimated at
each vertex ofM, we inspect the edges g¥1 and check whether they contain
curvature maxima and minima. We detect the crest line \estand connect them
together following the procedure proposed in (Ohtake e28I04) with one small,
but important, addition. It turns out that the procedure rgagerate several close
disconnected crest lines in situations similar to thosevshim the left images of
Figures 6 and 7. In order to reduce the fragmentation of thetdines we inspect
the mesh vertices and their one-ring neighborhoods. Fdr@ae-ring vertex neigh-
borhood containing crest line end-points we connect twomoidts if o < 7/3,

8 < m/3,v < 7/2, wherea, 3, and~y are the angles between the end-segments
and the segment connecting the end-points, as seen themgge of Figure 6.
Figure 7 demonstrates how well our additional procedureoninecting the close
disconnected crest lines improves the zero-crossing tietgarocedure of (Ohtake
et al., 2004).

13



Figure 6. Left: situations when we may want to connect the crest linesv(sho bold)

together. Right: angles, 5, and~ generated by crest line end-segments and the segment

connecting crest line end-points are used to measure when gap-jumpecessary.

SO g
Fa . L
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N \
\ \

Figure 7. Gap-jumping example. Left: several close disconnectedlgrestare obtained
by (Ohtake et al., 2004) where the mesh edge is closely parallel to thdinesstRight:
the fragmentation is reduced by our connecting scheme.

5 Thresholding Crest Lines

After the full set of crest lines is extracted, we need a fittgprocedure in order to
remove spurious lines and select the most perceptualigrdarest line structures.
Our motivation behind filtering the crest lines is as follow$e crest lines are a
subset of the ridges which correspond to the cuspidal edigé® docal surfaces.
As mentioned in Section 2, the ridges and, therefore, th&t tirees are not defined
properly on the Dupin cyclides. Thus we can expect that sarfagions close to
Dupin cyclide patches contain a noisy pattern of crest limég quantities

Cl = |6max| + |6min| or CQ = \/|emax|2 + |6rnin|2 (23)

computed at a given surface point indicate how far/close allssarface neigh-
borhood around the point is from being a part of a Dupin cyliihus the local
cyclidities (23) can be used to filter out insignificant cllests arising at mesh parts
corresponding to planar, spherical, conical, cylindrieald other Dupin cyclide re-
gions on a smooth surface.

Cyclidity measures. We use two cyclidity thresholds to measure the strengths

of the detecting crest lines:

T, = /\/|emax| + |emn|ds and Ty = /ds . /\/|emax|2 + |emin|2ds. (24)

14



Both these cyclidity measures are scale-independent.ditiaa, as shown in Sec-
tion 2, the first one is Nbius-invariant.

Cyclidity thresholds (24) involve third-order surface datives and, therefore, are
more complex than the thresholding scheme used in (Ohtake 2004) where the

integral of a principal curvature along a feature line wasdiOn the other hand,
filtering crest lines with either of the cyclidity thresheldf (24) is simpler than the

thresholding scheme proposed in (Cazals and Pouget, 200ka¢ & second-order
curvature derivative is used for removing spurious andjmgicant ridges and crest
lines.

We use a linear interpolation scheme for estimating thel logaidities C; andCy
at crest line vertex located on mesh eddp, q|:

aC(p) +bC(q)
a+b

C(V) = )
wherea = |enmax(q)], b = |emax(p)| fOr the convex crest lines and= |ein(q)|,
b = |emin(p)| for the concave ones. Now the integrals in (24) are estimbyed
simple trapezoid approximation similar to that used in @etet al., 2004).

Figure 8 demonstrates how filtering with works for a model with flat and cylin-
drical regions. Notice how well the crest lines detectechatrhesh parts approxi-
mating those regions are filtered out by increasihgFigure 9 provides with more
examples of filtering the crest lines using the cyclidityséd measuré; .

Figure 10 demonstrates how our cyclidity-based filteringesoes work for a model
with spherical and cylindrical regions. In this particuetample, filtering withl5

was applied. The use @f produces very similar results. Figure 11 exposes crest
lines detected on a more complex model containing flat aniddytal regions.
Increasingl;, allows us to remove inessential crest lines while presgrgalient
ones. The figure also demonstrates how the size of vertekip@igoods used for
polynomial fitting affects the crest line detection proced larger neighborhood
leads to smoother approximation of the mesh and, theredtiosys us to disregard
the crest lines located in slightly convex/concave regi@ee also Figure 4 where
one-ring neighborhood polynomial fitting is used for all thedels.

6 Crest Lines and Mesh Simplification

In this section, we develop a quadric-based mesh simpldicgdirocedure guided
by the distance field from crest lines. Our use of crest limeslaptive mesh sim-
plification purposes is inspired by (Kho and Garland, 208®)ce crest lines on a
mesh are important shape features, it is natural to simgigéymesh aggressively
far from the most salient crest lines and preserve the mealvicinity of them.
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Figure 8. Top: detecting crest lines for a model containing flat and cyliadrégions for
various values of threshold;. The focal surface based finite difference scheme is em-
ployed to estimate curvature tensor and extremalities. Note that appearfasigerious
ridges does not depend on curvature estimation algorithms, see the bottéwolehages
which are the crest lines generated by using the local polynomial and fitting schemes,
respectively.

Given a set of feature lines (crest lines, in our case) orasad, following (Lévy
et al., 2002) for a surface poipt € S we considerd(p) the geodesic distance
betweenp and the closest feature line (crest line) point. Let f@gbe the max-
imum of the geodesic distancégsp) over all points ofS. We introduce a scale-
independent weighted distance function

d "
F(d) = (max(d) +e> , (25)

wheree is a regularization parameter (in all our experiments weeusd).1) andn
is a positive user-specified parameter which is used to ebatlegree of influence
of the crest lines.

Once the crest lines are detected and filtered, we compuseeth feature distance
d; for each trianglel; € M. Let us define the distance between two triandles
andT; of M sharing a common edge as the sum of distances between thgidria
centroids and the edge midpoint. To comp{#e} we use a variant of the Floyd-
Warshall all-pairs shortest path algorithm.

Figure 12 visualizes the distance fields computed on the Rlarek bust and Stan-
ford bunny meshes.

Similar to (Kho and Garland, 2003) a weighted quadric erretrio w;Q(7}) is
assigned to each trianglE of mesh.M, whereQ(T;) is the standard Garland-
Heckbert QEM (Garland and Heckbert, 1997). Wewset= 1/F(d;) and control

16



Figure 9. Convex (blue) and concave (red) crest lines detected lgggmal models with
many geometric features of various kinds. Center: no thresholding is dpplight: the
crest lines are filtered by usirifj. One can observe that spurious crest lines initially de-
tected on spherical parts of the gearbox model (third from the top) ficeeetly removed.
Here the focal surface based finite difference scheme is employedtforating the prin-
cipal curvature tensor and extremalities.

the degree of influence of crest lines via parametar (25). Figure 13 presents
the Max-Planck mesh its eye region 90%-decimated for van@lues of;. The

17



Figure 10. Detecting crest lines for a model containing spherical anddeidal regions
for various values of threshold@,. The local polynomial fitting scheme with three-ring
neighborhood is used to estimate curvature tensor and extremalities.

Figure 11. Crest lines detected on a mechanical part model with diffeaéus of thresh-
old T;. The local polynomial fitting scheme with one-ring (top) and four-ring (bajto
neighborhoods are used to estimate curvature tensor and extremalities.
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Figure 12. Distance from salient crest lines is visualized for Max-Plénsk and Stanford
bunny meshes. The crest lines are found with the local polynomial fitting widething
neighborhood for both the models.
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detected crest lines are those shown in the left image oflRigThe mesh density
is changing smoothly according to geodesic distance tordwst tines.

Figure 13. Max-Planck mesh and its eye part 90%-decimated for varaues/ofy. The
left image ¢ = 0) shows the result of the standard Garland-Heckbert decimation proce-
dure.

7 Discussion and Conclusion

We have developed robust and reliable algorithms for dietgc¢he crest lines on
surfaces approximated by dense triangle meshes. Accotdingr experiments
the crest line detection with cubic polynomial fitting achge the speed of about
100/k thousand triangles per second if the k-ring vertegmeorhoods are used for
fitting (i.e., the computational time is proportional to tsiee of the vertex neigh-
borhood used for fitting). Our modification of the curvatueador fitting scheme
of (Rusinkiewicz, 2004) and the focal surface approach aremtfaster: they pro-
cess 0.5M and 1-1.2 M triangles per second, respectivelie that so high speeds
of the two latter methods are achieved because almost no snesbthing is per-
formed during the crest line detection and tracing stagesh&first method is less

1A Core2Duo E6600 (2.4 GHz) PC with 2GB RAM equipped with gcc 4.1.1 C+#-co
piler is used. No parallelization is applied.
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Figure 14. Comparison with the exact crest lines. (a): the input meshrajedeby sam-

pling on an analytical surface. (b): the exact crest lines. (c,d,e)resuits with the local

polynomial fitting (c), curvature tensor fitting (d), and focal surfacedutfinite difference

(e) schemes. The mesh we used to approximate the waving surface is\get tieonsists

of less than 5K triangles only. Nevertheless fiteand L> (max-norm) error estimates for
the curvature extremality coefficients are reasonably good, see Fifure 1

sensitive to noise and produces better results for noisy waile the second and
third ones deliver better results for clean data.

All the three methods are capable of achieving high quadisults in detecting the
crest lines to compare with schemes based on global fittiaggalures. Figure 16
provides the reader with a visual quality comparison of dgoathms and one de-
veloped in (Ohtake et al., 2004) where hierarchical CS-RBRditwas employed.
Figures 14 and 15 deliver the visual and numerical compasisd our crest line
detection algorithms with the exact results obtained ditally for a trigonometric

surfacer(u, v) = [ucos v, usin v, cos ul.

In addition to high speed performance, our methods dematesiood results while
processing different types of meshes, as seen in Figure83h, 14, 16, and 17.
Further, as demonstrated in Figures 5 and 17, our approackesbust w.r.t. the
mesh quality: the Stanford Bunny and Vase-Lion models shiavime figures have
the quite irregular mesh structures. In Figure 17, we preatso an example of
extracting the crest lines in the case when no smoothing piegpto the mesh
M. While it delivers a truly faithful detection of the crestdis, a small amount
of smoothing seems necessary to get visually pleasablégesudetecting these
delicate surface features.

L? L

kmax kmin €max €min kmax kmin €max €min

cubic fitting | 0.044| 0.046| 0.126| 0.145|| 0.313| 0.313| 0.479| 0.563
tensor fitting | 0.055| 0.059| 0.163| 0.176| 0.383| 0.383| 0.59 | 0.707
focal surfaces 0.084| 0.085| 0.221| 0.225| 0.741| 0.362| 0.881| 0.826

Figure 15. The.? and max-norm errors for the estimated curvature tensor and extremalities

of the waving surface (see Figure 14) via the local polynomial fitting (@yature tensor
fitting (b), and focal surface based finite difference (c) schemes.

Our focal surface approach can be naturally extended tondeaith point clouds
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Figure 16. A comparison of crest line detection methods. The crest linesaaed on
Camel (78K triangles), Cow (93K triangles), and Feline (399K trianglegjatso no fil-
tering is applied. (a): Hierarchical CS-RBF fitting (Ohtake et al., 200%) ¢ttree level
is used) is robust but slow (55s, 68s, and 313s for these three moelgiectively) and
not sufficiently accurate (see the eye areas of the Camel and Cow).qbrdocal cubic
polynomial fitting is more accurate and much faster; (b): three-ring vegahiborhood is
used for polynomial fitting (2.24s, 2.98s, and 13.7s); (c): one-rintexereighborhood is
used for polynomial fitting (0.66s, 0.85s, and 3.77s). (d): Crest linectietebased on the
curvature tensor fitting of (Rusinkiewicz, 2004) is even faster (0.13§,9) and 0.78s). (e):

our focal surface based algorithm is sufficiently accurate and vety(€08s, 0.08s, and
0.35s).

and triangle soups. The main change required is to use anqmete graph Lapla-
cian instead of a mesh Laplacian. Graph Laplacians are ndelyused in geomet-
ric data analysis and machine learning (Coifman et al., 2@@8)their asymptotic
properties are well understood (Coifman and Lafon, 2006g&in2006) (see also
references therein).

In this study, we have not utilized the full power of (6). Ontg., t., and
emax, €min are found, (6) allows us to compute the remaining first-omewvature
derivativeSokax /Ot min @nNdOkyin /Ot max-

One limitation of our focal surface approach, the fastesstline detection tech-

nique, consists of certain difficulties in estimating thevatiure extremalities,,, .,
ande,,;, in the mesh vertices close to the parabolic lines of surfatedeed, each
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Figure 17. Detecting the crest lines on an irregular mesh model. No smoothapglied to
the meshM for (c). Simple parameter-free smoothing of the mg@ghis used to generate
(d). Finally (e) is obtained from (d) by filtering the detected crest linegibgefined in (24).
Here the focal surface based finite difference scheme is employed to testinaature
tensor and extremalities.

focal surface goes to infinity at the points of its correspngdarabolic line on
r. In practice, it affects very slightly our method for defagtthe crest lines since
they do not cross the parabolic lines. Nevertheless, if &amason of e¢,,,,, and
emin IS required at a parabolic point, we can apply an inversiahthen use (16)
for estimating the corresponding curvature derivatives.

In this paper, we have focused on crest line extraction aadgmted only one ge-
ometric modeling application the these fascinating serfaatures: adaptive mesh
decimation. We hope that our crest line detection appraachk be very useful
for a number of shape interrogation and visualization tasks

Our main mathematical contribution consists of discovgr@nseries of Mbius-
invariant surface-based differential forms and we expeat it will assist to further
penetration and use of ideas and methods 6bMs differential geometry in geo-
metric modeling and computer graphics areas.

To conclude, this work contributes to a computer-aided iss@ace of the local
differential geometry of curves and surfaces, a field withugpssing richness of
ideas and results.
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