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Abstract

The crest lines, salient subsets of the extrema of the principal curvatures over their corre-
sponding curvature lines, are powerful shape descriptors which arewidely used for shape
matching, interrogation, and visualization purposes. In this paper, we develop fast, accu-
rate, and reliable methods for detecting the crest lines on surfaces approximated by dense
triangle meshes. The methods exploit intrinsic geometric properties of the curvature ex-
trema and provide with an inherent level-of-detail control of the detected crest lines. As an
immediate application, we use of the crest lines for adaptive mesh simplification purposes.

Key words: ridges, crest lines, focal surfaces, Möbius-invariant energies, surface
Laplacian

1 Introduction

Previous work. Surface creases, curves on a surface along which the surface
bends sharply can be intuitively defined as loci of sharp variation points of the sur-
face normal. Mathematically the sharp variation points of the surface normals are
described via extrema of the surface principal curvatures along their corresponding
lines of curvature. The full set of such extrema, frequentlycalled ridges (Porte-
ous, 1987), corresponds to the edges of regression of the envelopes of the surface
normals and was first studied by A. Gullstrand in connection with his work in oph-
thalmology (1911 Nobel Prize in Physiology and Medicine). Since then the ridges
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and their subsets have been thoroughly studied in connection with research on clas-
sical differential geometry and singularity theory (Koenderink, 1990; Belyaev et al.,
1997; Cazals and Pouget, 2004b, 2005), and they were frequently used for shape in-
terrogation purposes (see, for example, (Hosaka, 1992, Sect. 7.4), (Hallinan et al.,
1999, Chap. 6), (Porteous, 1994, Chap. 11), and references therein). Also numer-
ous applications in image and data analysis (Monga et al., 1992), quality control
of free-form surfaces (Hosaka, 1992), human perception (Hoffman and Richards,
1985), analysis and registration of anatomical structures(Pennec et al., 2000), ge-
omorphology (Little and Shi, 2001), and non-photorealistic rendering (Interrante
et al., 1995; DeCarlo et al., 2003) have been proposed. The so-calledcrest lines
(Thirion et al., 1992) are formed by the perceptually salient ridge points and consist
of the surface points where the magnitude of the largest (in absolute value) prin-
cipal curvature attains a maximum along its corresponding line of curvature. The
ridges possess many interesting properties. In particular, they can be defined as the
loci of surface points where the osculating spheres have high-order contacts with
the surface and, therefore, the ridges are invariant under inversion of the surface
w.r.t. any sphere (Porteous, 1987). The ridges can be also described as the surface
curves corresponding to the cuspidal edges of the two focal surfaces (Porteous,
1994, Chap. 11).

Practical detection of the crest lines and other types of theprincipal curvature ex-
trema is a difficult computational task because it requires ahigh-quality estimation
of the principal curvature tensor and curvature derivatives. In general, global fitting
methods are supposed to do a better job in estimating high-order surface derivatives
and, therefore, to allow for achieving more accurate detection of surface curvature
features (Kent et al., 1996; Ohtake et al., 2004) than local estimation schemes. On
the other hand, the local schemes are much faster and often demonstrate a quite
satisfactory performance (Guéziec, 1993; Stylianou and Farin, 2004; Cazals and
Pouget, 2004a).

The vast majority of the local schemes for detecting the crest lines can be separated
into those based on local polynomial fitting (Cazals et al., 2006a,b; Kim and Kim,
2006; Yoshizawa et al., 2005) and schemes based on discrete differential operators
(Hildebrandt et al., 2005). While estimating surface curvatures and their deriva-
tives with geometrically inspired discrete differential operators (Hildebrandt et al.,
2005; Rusinkiewicz, 2004; Yoshizawa et al., 2007) is more elegant than using fitting
methods. The former usually requires noise elimination andthe latter seems more
robust. On the other hand, as pointed out in (Rusinkiewicz, 2004), fitting methods
incorporate a certain amount of smoothing in the curvature and curvature derivative
estimation processes and that amount is very difficult to control. Another limitation
of fitting schemes consists of their relatively low speed to compare with discrete
differential operators. Further, since predefined local primitives are used for fitting,
one cannot expect a truly faithful estimation of surface differential properties.

Our geometry-based finite difference method (Yoshizawa et al., 2007) exploits geo-
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metric relationships between a given surface and its focal surfaces, namely between
the derivatives of the principal curvatures along their corresponding curvature lines
and the area elements of the focal surfaces. The idea to use properties of focal
surfaces for detecting principal curvature extrema was previously considered in
(Lukács and Andor, 1998) and (Watanabe and Belyaev, 2001). To compare with
these previous works where only basic qualitative connections between geometries
of the surface and its focal set were considered, a deeper quantitative understanding
of the relationships was used (Yoshizawa et al., 2007).

Our contribution. In this paper, we revise, enhance, and test three recent tech-
niques for detecting and drawing the crest lines on surfacesapproximated by dense
triangle meshes:

(a) the local polynomial fitting scheme of (Yoshizawa et al.,2005);
(b) an adapted and modified version of the general finite-difference curvature ten-

sor fitting approach of (Rusinkiewicz, 2004);
(c) the focal surface based technique of (Yoshizawa et al., 2007).

Our general procedure consists of three phases:

(1) estimating the principal curvature tensor and curvature derivatives,
(2) tracing the crest lines, and
(3) efficient thresholding of the lines.

For the first phase, we use a new focal surface based finite difference scheme
(Yoshizawa et al., 2007) and appropriately modified versions of a local polyno-
mial fitting scheme of (Goldfeather and Interrante, 2004) and a curvature tensor
fitting scheme of (Rusinkiewicz, 2004). For the second phase, we develop and use
an enhancement of the zero-crossing curvature-extremum detection procedure of
(Ohtake et al., 2004). Our crest line thresholding strategyconsists of penalizing the
crest line points in surface regions close to Dupin’s cyclide patches (every point
of a Dupin’s cyclide is a ridge point and, therefore, the crest lines are not defined
properly there). Finally we consider applications of the crest lines to adaptive mesh
simplification.

While (c) demonstrates the fastest performance and deliversvery good results for
dense noise-free meshes, (a) achieves the highest accuracyamong the approaches,
The tensor fitting approach (b) occupies an intermediate position between (a) and
(c). It is worth to mention here that (c) is a pure geometricaland without a doubt
has a greater mathematical elegance then (a) and (b).

Paper organization. The three approaches we present in this paper use the same
zero-crossing curvature-extremum detection procedure (Ohtake et al., 2004), the
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same procedure for tracing the detected crest lines (Yoshizawa et al., 2005), and
very similar thresholding/filtering schemes. So we do not describe the approaches
separately. In Section 2 we present a collection of mathematical results needed for
(a), (b), and (c). Section 3 describes curvature and curvature extremality estima-
tion schemes corresponding to the approaches. Sections 4 and 5 are devoted to the
crest line tracing and thresholding stages, respectively.In Section 6 we consider an
application of crest lines to feature preserving mesh decimation. We compare the
approaches, reveal their strong and week sides, and conclude in Section 7.

2 Differential Geometry Background

Crest lines, ridges, focal surfaces, and Dupin cyclides.Consider a smooth ori-
ented surfaceS given by radius-vectorr and denote bykmax andkmin its maximal
and minimal principal curvatures,kmax ≥ kmin. Let tmax and tmin be the corre-
sponding principal directions. Denote byemax andemin the derivatives of the prin-
cipal curvatures along their corresponding curvatures directions:

emax = ∂kmax/∂tmax, emin = ∂kmin/∂tmin. (1)

Following (Thirion, 1996) we callemax andemin theextremality coefficients. Strictly
speaking, the extremality coefficients are not defined at theumbilical points (the
points wherekmax = kmin) since the principal directions are undefined there. The
ridges are formed by the closure of points onS where one of the extremality coeffi-
cients vanishes. According to this definition, the umbilical points can be considered
as ridge points. In (Porteous, 1994; Hallinan et al., 1999) the ridge patterns in small
vicinities of umbilical points are analyzed.

The crest lines consist of perceptually salient ridge points. We distinguish convex
and concave crest lines. The convex crest lines are given by

emax = 0, ∂emax/∂tmax < 0, kmax > |kmin|,

while the concave crest lines are characterized by

emin = 0, ∂emin/∂tmin > 0, kmin < −|kmax|.

The convex and concave crest lines are dual w.r.t. the surface orientation: changing
the orientation turns the convex crest lines into concave one and vice versa.

Denote byF the focal set ofS. The focal set is formed by the principal centers
of curvature and consists of two focal surfaces corresponding to the maximal and
minimal principal curvatures

fmax = r + n/kmax and fmin = r + n/kmin.
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The focal surfacesfmax andfmin have singularities which, in the generic case, con-
sist of cuspidal edges, space curves corresponding to the ridges onS, and isolated
point singularities (Figure 1 demonstrate the focal surfaces of an ellipsoid).

The crest lines form a subset of the ridges and correspond to certain parts of the
cuspidal edges of the focal surfaces. The ridges and, therefore, the crest lines are
not defined properly on the Dupin cyclides, special surfaceswhich can be charac-
terized by the condition that both their focal surfaces degenerate into space curves
(Eisenhart, 1909,§132). The Dupin cyclides were introduced by French geome-
ter Charles Dupin at the beginning of the 19th century and since then have been
intensively studied in connection with various shape modeling tasks (see, for ex-
ample, (Chandru et al., 1989), (Foufou and Garnier, 2004), and references therein).
Figure 2 shows typical Dupin cyclides.

Figure 1. The focal surfaces of an ellipsoid.

Figure 2. Dupin cyclides - surfaces without ridges.

One can show that the Dupin cyclides are characterized by thecondition

emax = 0 = emin or, equivalently, |emax|
2 + |emin|

2 = 0. (2)

Notice that the left-hand side of right-most equation in (2)is the integrand of the so-
called MVS functional introduced in (Moreton and Séquin, 1992) for fair surface
design purposes.

There are interesting relations between the extremality coefficientsemax andemin

and area elements of the two focal surfacesfmax andfmin. Namely, letnmax andnmin

be the orientation normals offmax andfmin, respectively. Denote byDmaxnmax and
Dminnmin form the oriented area elements offmax and fmin (i.e., Dmax andDmin

are the determinants of the2 × 2 matrices composed of the coefficients of the first
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fundamental forms offmax andfmin), respectively. Then

emaxtmax =
k3

maxDmax

kmax − kmin

nmax, emintmin =
k3

minDmin

kmin − kmax

nmin. (3)

It is worth to observe that (3) implies simple relations between the surface principal
directionstmax, tmin and normalsnmax, nmin of the focal surfacesfmax, fmin. The
relations were recently used as key ingredients of a novel approach to robust es-
timating the principal directions and curvatures of triangulated surfaces (Yu et al.,
2007).

A proof of (3) can be found, for example, in (Weatherburn, 1927, §75). Below we
give our own simple proof of these formulas. In a small vicinity of non-umbilical
point ofS let us consider the lines of curvature parameterized by their arc lengths.
Then the surface is locally represented in parametric formr = r(u, v) for which

ru = tmax, rv = tmin, nu = −kmaxtmax, nv = −kmintmin.

Consider now a generalized focal surface

f = r(u, v) + R(u, v)n(u, v). (4)

SubstitutionsR = Rmax ≡ 1/kmax andR = Rmin ≡ 1/kmin give us the standard
focal surfacesfmax andfmin, respectively. The oriented area elementfu × fv of (4)
is

−Ru (1 − R/Rmin) tmax − Rv (1 − R/Rmax) tmin + (1 − R/Rmax) (1 − R/Rmin)n

and (3) immediately follows.

Formulas (3) explain the “focusing” effect of each focal surface near its edges of
regression: the area element of a focal surface degeneratesto zero at the edges of
regression. This observation was used in (Lukács and Andor, 1998; Watanabe and
Belyaev, 2001) for detecting creases on meshes. In our study, we employ the full
power of (3).

Principal curvatures and their gradients from surface Laplacian. It is widely
known that

∆Sr = (kmax + kmin)n, (5)

wheren is the orientation normal for a smooth surfacer and∆S is the Laplace-
Beltrami operator (the surface Laplacian). It is much less known that

∆Sn = −
(

k2

max + k2

min

)

n −∇S (kmax + kmin) , (6)
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where∇S stands for the surface tangential gradient operator. A proof of (6) can be
found in classical differential geometry textbook (Weatherburn, 1927,§119) whose
author considered this formula as a key ingredient of his surface vector analysis
approach (Weatherburn, 1930).

Given a good approximation of the normaln and Laplace-Beltrami operator∆S for
a surface approximated by a mesh, one can estimate the principal curvature tensor
and the surface gradients of the principal curvatures as follows. Note that (5) and
(6) imply

∆Sr · n = kmax + kmin, ∆Sn · n = −
(

k2

max + k2

min

)

(7)

and the principal curvatures are determined directly from (7). Now one can build
meshes approximating the focal surfaces and use (3) to estimate the principal direc-
tions and extremality coefficients. Finally, if necessary,the remaining derivatives of
the principal curvatures can be estimated from (6).

Curvature extremalities for implicit surfaces. It seems well known that for a
surface given in implicit formF (x) = 0, x = (x1, x2, x3), extremailty coefficient
e = ∂k/∂t is given by

e = ∇k · t =
Fijltitjtl + 3kFijtinj

|∇F |
, (8)

whereFij andFijl denote the second and third partial derivatives ofF (x), respec-
tively, t = (t1, t2, t3) is the principal direction corresponding to a principal curva-
turek, n = (n1, n2, n3) is the unit surface normal, and the summation over repeated
indices is implied. In its present from, (8) is derived in (Belyaev et al., 1998). See,
for example, (Porteous, 1994, Exercise 11.8) and also (Monga et al., 1992) where
a small mistake in the final formulas for the curvature derivatives is made.

Assume now that the coordinates are chosen such that the origin of coordinates is
situated on the surface and the coordinate vectors coincidewith the frametmax,
tmin, andn. Then our surfaceS is given locally in the Monge formz = h(x, y)
with

h(x, y) =
1

2
(b0x

2 + 2b1xy + b2y
2) +

1

6
(c0x

3 + 3c1x
2y + 3c2xy2 + c3y

3) (9)

+
1

24
(d0x

4 + 4d1x
3y + 6d2x

2y2 + 4d3xy3 + d4y
4) + . . . .

Straightforward computations show that, in this particular case, (8) simplifies into

e = ∂k/∂t = Fijltitjtl, (10)
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where, as before, the summation over repeated indices is assumed. Now (9) and
(10) give

e = ∂k/∂t =







t21

t22







T 





c0 c1

c2 c3













t1

t2





 (11)

at the local originh(0, 0) wheret = (t1, t2) is the principal direction corresponding
to principal curvaturek.

It is interesting to compare (11) with the derivative-of-curvature tensor

C =













a b

b c













b c

c d











 (12)

derived in (Rusinkiewicz, 2004) (see formula (8) there). The derivative of curvature
in directiont is given by

C(t, t, t) =







t21

t22







T 





a 3b

3c d













t1

t2





 (13)

which is equivalent to (11) withc0 = a, c1 = 3b, c2 = 3c, andc3 = d.

Invariance properties of curvature extrema. It is not difficult to show that
the ridges, the full set of the extrema of the principal curvatures along their cor-
responding curvature directions, are Möbius-invariant (i.e., scale-independent and
inversion-invariant). Indeed, they are obviously scale-invariant and their invariance
w.r.t. the inversions can be easily verified by direct computations.

Consider surfacẽr obtained fromr by inversion w.r.t. the sphere of radiusc cen-
tered at the origin of coordinates

r̃ = c2r/r2, r2 = r · r.

Then the length elements ofr̃ andr are related by

ds̃ = c2ds/r2. (14)

Direct computations (Weatherburn, 1927,§§82-83) show that the principal curva-
tures ofr̃ are given by

k̃max = −
r2

c2
kmax −

2

c2
r · n, k̃min = −

r2

c2
kmin −

2

c2
r · n (15)
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and the curvature lines ofr are mapped onto the curvature lines ofr̃. One can
observe that (14) and (15) imply the Möbius-invariance of the differential form

(kmax − kmin)
2dA

corresponding to the well-known Willmore energy (Willmore, 2000). The Willmore
energy measures deviation from sphericity and is currentlya subject of intensive
research in differential geometry (Hertrich-Jeromin, 2003) and geometric modeling
(Bobenko and Schröder, 2005); see also references therein.

Now differentiatingk̃max andk̃min in (15) along their corresponding curvature lines
and using the Rodrigues’ curvature formula gives a new and unexpected result

c2

r2
ẽmax =

∂k̃max

∂tmax

= −
r2

c2
emax,

c2

r2
ẽmin =

∂k̃min

∂tmin

= −
r2

c2
emin (16)

and the inversion-invariance of the ridges follows.

Using (16) we arrive at

ẽmaxds̃2 = −emaxds2, ẽminds̃2 = −eminds2 (17)

and can easily construct a number of Möbius-invariant differential forms:
√

|emax| + |emin| ds, (18)

√

e2
max + e2

min dA,
√

|emaxemin| dA, |emax|dA, |emin|dA, (19)

e2
max dA

(kmax − kmin)
2
,

e2
min dA

(kmax − kmin)
2
,

emaxemin dA

(kmax − kmin)
2
, (20)

whereds anddA are curve-on-surface arc-length and surface area elements, re-
spectively.

Some of these M̈obius-invariant surface-based differential forms were studied be-
fore. For example, in (Ferapontov, 2000) it was shown that the last term of (20) is
also offset-invariant, i.e. invariant w.r.t shifting eachsurface point to a fixed dis-
tance along the surface normal direction at that point. Someothers seem to be new
although they can be obtained from a complete Möbius invariant system derived in
(Wang, 1992).

It is worth to notice a similarity between the M̈obius-invariant surface energy
∫ ∫

√

e2
max + e2

min dA

corresponding to the first differential form in (19) and the MVS functionals
∫ ∫

(

e2

max + e2

min

)

dA and
∫ ∫

(

e2

max + e2

min

)

dA ·
∫ ∫

dA
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introduced and studied in (Moreton and Séquin, 1992; Joshi and Séquin, 2007).

In our study, we will use (18) for selecting perceptually salient subsets of the crest
lines.

3 Practical Estimation of Surface Curvatures and Curvature Extremalities

Given a triangle meshM approximating a smooth surfaceS, our first task is to get
an accurate and robust estimation of the surface normal. Ournumerical experiments
suggest that a simple method of (Max, 1999) is a very good choice.

Since the curvature extrema are very sensitive to even smallshape variations, it is
a good idea to apply first a simple parameter-free smoothing procedure. As we will
see later, it is not really necessary but leads to more visually pleasant patterns of
the crest lines. Namely, motivated by (Taubin, 2002), we consider the dual mesh
consisting of the triangle centroids ofM and construct an auxiliary mesh whose
vertices are the centroids of the polygons composing the dual mesh. The auxiliary
mesh inherits the connectivity ofM.

The principal curvatures, principal directions, and the curvature extremalities are
estimated at the auxiliary mesh vertices via one of the following three schemes:
local cubic polynomial fitting (Yoshizawa et al., 2005), a modified version of the
tensor fitting procedure of (Rusinkiewicz, 2004), and the focal surface based fi-
nite difference scheme (Yoshizawa et al., 2007). Then the crest lines are traced on
M by using the corresponding curvature tensor and extremality coefficients of the
auxiliary mesh.

Local cubic polynomial fitting. In our numerical experiments we use an en-
hanced version of the adjacent-normal cubic approximationmethod of (Goldfeather
and Interrante, 2004). The cubic polynomial given by the right-hand side of (9) is
fitted in the least-square sense (Goldfeather and Interrante, 2004) to each auxiliary
mesh vertex and a set of its neighboring vertices. That set ofneighbors is obtained
from thek-ring neighborhood (k = 1, 2, 3, 4) of the auxiliary mesh vertex by re-
moving those vertices whose normals make obtuse angles withthe normal at the
auxiliary mesh vertex.

Then the curvature tensor and extremality coefficients are derived using (9) and
(11). Finally these curvature attributes are assigned to the original vertices of mesh
M.

Figure 3 compares the sets of crest lines detected on a 3D textmesh via the straight-
forward polynomial fitting (the top image) and the enhanced adjacent-normal cubic
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approximation method (we use one-ring neighborhood in thisexample).

Although our scheme for estimating surface derivatives seems complicated, it leads
to highly effective crest line detection procedure which only slightly depends on
the mesh connectivity and triangle aspect ratios. Figure 4 shows crest line patterns
found on simple and complex geometrical models for various values of a user-
specified parameter which controls the strength of detectedcrest lines.

In Figure 5 we compare the patterns of the crest lines detected on the original
Stanford bunny mesh and on the mesh obtained via an implicitization of the bunny
model and then polygonizing it using (Bloomenthal, 1994). Despite the fact that
the new bunny mesh contains many sliver triangles and has irregular connectivity,
the patterns of the crest lines found on the meshes are remarkably similar.

Figure 3. Crest lines detected on 3D text. Top: polynomial fit without preliminary estima-
tion of mesh normals is used. Bottom: the enhanced adjacent-normal cubic approximation
method is employed for estimating surface curvatures and their derivatives.

Curvature tensor fitting scheme. We use a simple modification of the scheme
of (Rusinkiewicz, 2004) for estimatingemax andemin. First we use the scheme to
estimate the principal curvatures and principal directions. Next we transform the
coordinate system so that the axes in the tangent plane coincide with the surface
principal directions and, therefore, (9) simplifies into

h(x, y) =
1

2
(kmaxx

2 + kminy
2) +

1

6
(c̃0x

3 + 3c̃1x
2y + 3c̃2xy2 + c̃3y

3) + . . . , (21)

where straightforward computations give

emax = c̃0 and emin = c̃3. (22)
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Figure 4. Crest lines detected on various triangle meshes. A scale-independent parameter
T2 of (24) is used to keep the most visually important features. For all the modelone-ring
neighborhood polynomial fitting is used for estimating the curvature tensor and extremali-
ties.

Figure 5. Patterns of crest lines and mesh triangles for two bunny models. Top: original
Stanford bunny mesh with 69,451 triangles is used. Bottom: another bunny mesh with
279,984 triangles is used. The necessary surface derivatives are estimated via the enhanced
cubic polynomial fitting with one-ring neighborhood for the original Stanfordbunny mesh
and three-ring neighborhoods for the remeshed bunny since the latter is more than three
times bigger than the original one.

Then the derivative-of-curvature tensor (12) is computed.Finally, taking into ac-
count (11), (13), (21), and (22) we arrive atemax = a andemin = d wherea andb
are defined in (12). In our numerical experiments, we use program codes accompa-
nying (Rusinkiewicz, 2004).
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Focal surface based finite difference scheme.Once the normals at the auxiliary
mesh vertices are estimated, the discrete principal curvatures are obtained from (7)
where the standard cotan formula (Pinkall and Polthier, 1993; Meyer et al., 2003)
is used to approximate the Laplace-Beltrami operator.

Now we are ready to build meshesFmax, Fmin, discrete counterparts of the focal
surfacesfmax, fmin, and estimate the principal directionstmax, tmin and extremali-
tiesemax, emin via (3). The discrete focal meshesFmax andFmin for the auxiliary
mesh are built and their normalsnmax andnmin are computed according to (Max,
1999).

In practice, if|kmax| > |kmin| we settmax = nmax andtmin = n×nmax. Otherwise,
tmin = nmin andtmax = nmin × n.

The oriented area element at a vertexv of Fmax (Fmin) is obtained by averaging the
oriented areas of adjacent triangles. Namely, only those triangles(v,vi,vi+1) from
the 1-ring neighborhood ofv contribute to the oriented area element atv, for which
kmax (kmin) has the same sign at the corresponding vertices ofM. We use this cur-
vature sign restriction condition in order to avoid troubles with the parabolic lines
on r where the corresponding focal surfaces go to infinity. Although according
to their mathematical definition, the crest lines stay asideof their corresponding
parabolic lines, the above condition contributes to numerical stability of our ap-
proach. Figure 9 demonstrates the resulting crest lines viaour focal surface based
finite difference scheme.

4 Tracing Crest Lines

Once the principal curvature tensor and extremality coefficients are estimated at
each vertex ofM, we inspect the edges ofM and check whether they contain
curvature maxima and minima. We detect the crest line vertices and connect them
together following the procedure proposed in (Ohtake et al., 2004) with one small,
but important, addition. It turns out that the procedure maygenerate several close
disconnected crest lines in situations similar to those shown in the left images of
Figures 6 and 7. In order to reduce the fragmentation of the crest lines we inspect
the mesh vertices and their one-ring neighborhoods. For each one-ring vertex neigh-
borhood containing crest line end-points we connect two end-points if α ≤ π/3,
β ≤ π/3, γ ≤ π/2, whereα, β, andγ are the angles between the end-segments
and the segment connecting the end-points, as seen the rightimage of Figure 6.
Figure 7 demonstrates how well our additional procedure of connecting the close
disconnected crest lines improves the zero-crossing detection procedure of (Ohtake
et al., 2004).
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γ
α β

Figure 6. Left: situations when we may want to connect the crest lines (shown in bold)
together. Right: anglesα, β, andγ generated by crest line end-segments and the segment
connecting crest line end-points are used to measure when gap-jumping is necessary.

Figure 7. Gap-jumping example. Left: several close disconnected crestlines are obtained
by (Ohtake et al., 2004) where the mesh edge is closely parallel to the crestlines. Right:
the fragmentation is reduced by our connecting scheme.

5 Thresholding Crest Lines

After the full set of crest lines is extracted, we need a filtering procedure in order to
remove spurious lines and select the most perceptually-salient crest line structures.
Our motivation behind filtering the crest lines is as follows. The crest lines are a
subset of the ridges which correspond to the cuspidal edges of the focal surfaces.
As mentioned in Section 2, the ridges and, therefore, the crest lines are not defined
properly on the Dupin cyclides. Thus we can expect that surface regions close to
Dupin cyclide patches contain a noisy pattern of crest lines. The quantities

C1 = |emax| + |emin| or C2 =
√

|emax|
2 + |emin|

2 (23)

computed at a given surface point indicate how far/close a small surface neigh-
borhood around the point is from being a part of a Dupin cyclide. Thus the local
cyclidities (23) can be used to filter out insignificant crestlines arising at mesh parts
corresponding to planar, spherical, conical, cylindrical, and other Dupin cyclide re-
gions on a smooth surface.

Cyclidity measures. We use two cyclidity thresholds to measure the strengths
of the detecting crest lines:

T1 =
∫

√

|emax| + |emin| ds and T2 =
∫

ds ·
∫ √

|emax|
2 + |emin|

2 ds. (24)
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Both these cyclidity measures are scale-independent. In addition, as shown in Sec-
tion 2, the first one is M̈obius-invariant.

Cyclidity thresholds (24) involve third-order surface derivatives and, therefore, are
more complex than the thresholding scheme used in (Ohtake etal., 2004) where the
integral of a principal curvature along a feature line was used. On the other hand,
filtering crest lines with either of the cyclidity thresholds of (24) is simpler than the
thresholding scheme proposed in (Cazals and Pouget, 2004a) where a second-order
curvature derivative is used for removing spurious and insignificant ridges and crest
lines.

We use a linear interpolation scheme for estimating the local cycliditiesC1 andC2

at crest line vertexv located on mesh edge[p,q]:

C(v) =
a C(p) + bC(q)

a + b
,

wherea = |emax(q)|, b = |emax(p)| for the convex crest lines anda = |emin(q)|,
b = |emin(p)| for the concave ones. Now the integrals in (24) are estimatedby a
simple trapezoid approximation similar to that used in (Ohtake et al., 2004).

Figure 8 demonstrates how filtering withT1 works for a model with flat and cylin-
drical regions. Notice how well the crest lines detected at the mesh parts approxi-
mating those regions are filtered out by increasingT1. Figure 9 provides with more
examples of filtering the crest lines using the cyclidity-based measureT1.

Figure 10 demonstrates how our cyclidity-based filtering schemes work for a model
with spherical and cylindrical regions. In this particularexample, filtering withT2

was applied. The use ofT1 produces very similar results. Figure 11 exposes crest
lines detected on a more complex model containing flat and cylindrical regions.
IncreasingT2 allows us to remove inessential crest lines while preserving salient
ones. The figure also demonstrates how the size of vertex neighborhoods used for
polynomial fitting affects the crest line detection procedure. A larger neighborhood
leads to smoother approximation of the mesh and, therefore,allows us to disregard
the crest lines located in slightly convex/concave regions. See also Figure 4 where
one-ring neighborhood polynomial fitting is used for all themodels.

6 Crest Lines and Mesh Simplification

In this section, we develop a quadric-based mesh simplification procedure guided
by the distance field from crest lines. Our use of crest lines for adaptive mesh sim-
plification purposes is inspired by (Kho and Garland, 2003).Since crest lines on a
mesh are important shape features, it is natural to simplifythe mesh aggressively
far from the most salient crest lines and preserve the mesh ina vicinity of them.
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Figure 8. Top: detecting crest lines for a model containing flat and cylindrical regions for
various values of thresholdT1. The focal surface based finite difference scheme is em-
ployed to estimate curvature tensor and extremalities. Note that appearance of spurious
ridges does not depend on curvature estimation algorithms, see the bottom-left two images
which are the crest lines generated by using the local polynomial and tensor fitting schemes,
respectively.

Given a set of feature lines (crest lines, in our case) on surfaceS, following (Lévy
et al., 2002) for a surface pointp ∈ S we considerd(p) the geodesic distance
betweenp and the closest feature line (crest line) point. Let max(d) be the max-
imum of the geodesic distancesd(p) over all points ofS. We introduce a scale-
independent weighted distance function

F (d) =

(

d

max(d)
+ ǫ

)η

, (25)

whereǫ is a regularization parameter (in all our experiments we useǫ = 0.1) andη
is a positive user-specified parameter which is used to control a degree of influence
of the crest lines.

Once the crest lines are detected and filtered, we compute a discrete feature distance
di for each triangleTi ∈ M. Let us define the distance between two trianglesTj

andTi of M sharing a common edge as the sum of distances between the triangle
centroids and the edge midpoint. To compute{di} we use a variant of the Floyd-
Warshall all-pairs shortest path algorithm.

Figure 12 visualizes the distance fields computed on the Max-Planck bust and Stan-
ford bunny meshes.

Similar to (Kho and Garland, 2003) a weighted quadric error metric wjQ(Tj) is
assigned to each triangleTj of meshM, whereQ(Tj) is the standard Garland-
Heckbert QEM (Garland and Heckbert, 1997). We setwj = 1/F (dj) and control
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Figure 9. Convex (blue) and concave (red) crest lines detected on polygonal models with
many geometric features of various kinds. Center: no thresholding is applied. Right: the
crest lines are filtered by usingT1. One can observe that spurious crest lines initially de-
tected on spherical parts of the gearbox model (third from the top) are efficiently removed.
Here the focal surface based finite difference scheme is employed for estimating the prin-
cipal curvature tensor and extremalities.

the degree of influence of crest lines via parameterη in (25). Figure 13 presents
the Max-Planck mesh its eye region 90%-decimated for various values ofη. The
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Figure 10. Detecting crest lines for a model containing spherical and cylindrical regions
for various values of thresholdT2. The local polynomial fitting scheme with three-ring
neighborhood is used to estimate curvature tensor and extremalities.

Figure 11. Crest lines detected on a mechanical part model with differentvalues of thresh-
old T2. The local polynomial fitting scheme with one-ring (top) and four-ring (bottom)
neighborhoods are used to estimate curvature tensor and extremalities.

Figure 12. Distance from salient crest lines is visualized for Max-Planckbust and Stanford
bunny meshes. The crest lines are found with the local polynomial fitting with three-ring
neighborhood for both the models.
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detected crest lines are those shown in the left image of Fig.12. The mesh density
is changing smoothly according to geodesic distance to the crest lines.

η = 0 η = 3 η = 6

Figure 13. Max-Planck mesh and its eye part 90%-decimated for various values ofη. The
left image (η = 0) shows the result of the standard Garland-Heckbert decimation proce-
dure.

7 Discussion and Conclusion

We have developed robust and reliable algorithms for detecting the crest lines on
surfaces approximated by dense triangle meshes. Accordingto our experiments1

the crest line detection with cubic polynomial fitting achieves the speed of about
100/k thousand triangles per second if the k-ring vertex neighborhoods are used for
fitting (i.e., the computational time is proportional to thesize of the vertex neigh-
borhood used for fitting). Our modification of the curvature tensor fitting scheme
of (Rusinkiewicz, 2004) and the focal surface approach are much faster: they pro-
cess 0.5 M and 1-1.2 M triangles per second, respectively. Note that so high speeds
of the two latter methods are achieved because almost no meshsmoothing is per-
formed during the crest line detection and tracing stages. So the first method is less

1 A Core2Duo E6600 (2.4 GHz) PC with 2GB RAM equipped with gcc 4.1.1 C++ com-
piler is used. No parallelization is applied.
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(a) (b) (c) (d) (e)

Figure 14. Comparison with the exact crest lines. (a): the input mesh generated by sam-
pling on an analytical surface. (b): the exact crest lines. (c,d,e): ourresults with the local
polynomial fitting (c), curvature tensor fitting (d), and focal surface based finite difference
(e) schemes. The mesh we used to approximate the waving surface is not dense: it consists
of less than 5K triangles only. Nevertheless theL2 andL∞ (max-norm) error estimates for
the curvature extremality coefficients are reasonably good, see Figure 15.

sensitive to noise and produces better results for noisy data while the second and
third ones deliver better results for clean data.

All the three methods are capable of achieving high quality results in detecting the
crest lines to compare with schemes based on global fitting procedures. Figure 16
provides the reader with a visual quality comparison of our algorithms and one de-
veloped in (Ohtake et al., 2004) where hierarchical CS-RBF fitting was employed.
Figures 14 and 15 deliver the visual and numerical comparisons of our crest line
detection algorithms with the exact results obtained analytically for a trigonometric
surfacer(u, v) = [u cos v, u sin v, cos u].

In addition to high speed performance, our methods demonstrate good results while
processing different types of meshes, as seen in Figures 3-5, 8-11, 14, 16, and 17.
Further, as demonstrated in Figures 5 and 17, our approachesare robust w.r.t. the
mesh quality: the Stanford Bunny and Vase-Lion models shownin the figures have
the quite irregular mesh structures. In Figure 17, we present also an example of
extracting the crest lines in the case when no smoothing is applied to the mesh
M. While it delivers a truly faithful detection of the crest lines, a small amount
of smoothing seems necessary to get visually pleasable results in detecting these
delicate surface features.

L2 L∞

kmax kmin emax emin kmax kmin emax emin

cubic fitting 0.044 0.046 0.126 0.145 0.313 0.313 0.479 0.563

tensor fitting 0.055 0.059 0.163 0.176 0.383 0.383 0.59 0.707

focal surfaces 0.084 0.085 0.221 0.225 0.741 0.362 0.881 0.826

Figure 15. TheL2 and max-norm errors for the estimated curvature tensor and extremalities
of the waving surface (see Figure 14) via the local polynomial fitting (a), curvature tensor
fitting (b), and focal surface based finite difference (c) schemes.

Our focal surface approach can be naturally extended to dealing with point clouds
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(a) (b) (c) (d) (e)

Figure 16. A comparison of crest line detection methods. The crest lines aretraced on
Camel (78 K triangles), Cow (93 K triangles), and Feline (399 K triangles) models, no fil-
tering is applied. (a): Hierarchical CS-RBF fitting (Ohtake et al., 2004) (7th octree level
is used) is robust but slow (55s, 68s, and 313s for these three models,respectively) and
not sufficiently accurate (see the eye areas of the Camel and Cow). (b,c): our local cubic
polynomial fitting is more accurate and much faster; (b): three-ring vertex neighborhood is
used for polynomial fitting (2.24s, 2.98s, and 13.7s); (c): one-ring vertex neighborhood is
used for polynomial fitting (0.66s, 0.85s, and 3.77s). (d): Crest line detection based on the
curvature tensor fitting of (Rusinkiewicz, 2004) is even faster (0.15s, 0.17s, and 0.78s). (e):
our focal surface based algorithm is sufficiently accurate and very fast (0.08s, 0.08s, and
0.35s).

and triangle soups. The main change required is to use an appropriate graph Lapla-
cian instead of a mesh Laplacian. Graph Laplacians are now widely used in geomet-
ric data analysis and machine learning (Coifman et al., 2005)and their asymptotic
properties are well understood (Coifman and Lafon, 2006; Singer, 2006) (see also
references therein).

In this study, we have not utilized the full power of (6). Oncetmax, tmin and
emax, emin are found, (6) allows us to compute the remaining first-ordercurvature
derivatives∂kmax/∂tmin and∂kmin/∂tmax.

One limitation of our focal surface approach, the fastest crest line detection tech-
nique, consists of certain difficulties in estimating the curvature extremalitiesemax

andemin in the mesh vertices close to the parabolic lines of surfacer. Indeed, each
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(a) (b) (c) (d) (e)

Figure 17. Detecting the crest lines on an irregular mesh model. No smoothing isapplied to
the meshM for (c). Simple parameter-free smoothing of the meshM is used to generate
(d). Finally (e) is obtained from (d) by filtering the detected crest lines byT1 defined in (24).
Here the focal surface based finite difference scheme is employed to estimate curvature
tensor and extremalities.

focal surface goes to infinity at the points of its corresponding parabolic line on
r. In practice, it affects very slightly our method for detecting the crest lines since
they do not cross the parabolic lines. Nevertheless, if an estimation of emax and
emin is required at a parabolic point, we can apply an inversion and then use (16)
for estimating the corresponding curvature derivatives.

In this paper, we have focused on crest line extraction and presented only one ge-
ometric modeling application the these fascinating surface features: adaptive mesh
decimation. We hope that our crest line detection approaches will be very useful
for a number of shape interrogation and visualization tasks.

Our main mathematical contribution consists of discovering a series of M̈obius-
invariant surface-based differential forms and we expect that it will assist to further
penetration and use of ideas and methods of Möbius differential geometry in geo-
metric modeling and computer graphics areas.

To conclude, this work contributes to a computer-aided renaissance of the local
differential geometry of curves and surfaces, a field with a surprising richness of
ideas and results.
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Moreton, H. P., Śequin, C. H., August 1992. Functional optimization for fair surface
design. In: Proceedings of ACM SIGGRAPH. pp. 167–176.

Ohtake, Y., Belyaev, A., Seidel, H.-P., August 2004. Ridge-valley lines on meshes
via implicit surface fitting. ACM Transactions on Graphics 23(3), 609–612,
proc. ACM SIGGRAPH 2004.

Pennec, X., Ayache, N., Thirion, J. P., 2000. Landmark-based registration using
features identified through differential geometry. In: Bankman, I. N. (Ed.), Hand-
book of Medical Imaging. Academic Press, pp. 499–513.

Pinkall, U., Polthier, K., 1993. Computing discrete minimalsurfaces and their con-
jugates. Experimental Mathematics 2 (1), 15–36.

Porteous, I. R., 1987. Ridges and umbilics of surfaces. In: Martin, R. R. (Ed.), The
Mathematics of Surfaces II. Clarendon Press, Oxford, pp. 447–458.

Porteous, I. R., 1994. Geometric Differentiation for the Intelligence of Curves and
Surfaces. Cambridge University Press, Cambridge.

Rusinkiewicz, S., 2004. Estimating curvatures and their derivatives on triangle
meshes. In: Second International Symposium on 3D Data Processing, Visual-
ization, and Transmission, (3DPVT’04). pp. 486–493.

Singer, A., July 2006. From graph to manifold Laplacian: Theconvergence rate.
Applied and Computational Harmonic Analysis 21 (1), 128–134.

Stylianou, G., Farin, G., September/October 2004. Crest lines for surface segmenta-
tion and flattening. IEEE Transactions on Visualization andComputer Graphics
10 (5), 536–544.

Taubin, G., 2002. Dual mesh resampling. Graphical Models 64(2), 94–113.
Thirion, J., 1996. The extremal mesh and the understanding of 3D surfaces. Inter-

national Journal of Computer Vision 19 (2), 115–128.
Thirion, J.-P., Monga, O., Benayoun, S., Guéziec, A., Ayache, N., 1992. Automatic
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