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The Feshbach operator formalism was used to calculate thirty doubly excited states of the Ha
molecule of the symmetries 37 ,,, 'TIg,., and 'Ag ., for internuclear distances up to 8 a.u. Basis
functions involving Sonine polynomials and centered on either nucleus or on the center of nuclear
mass allowed accurate inclusion of many one-electron molecular orbitals. Comparison is made

with previous results in the literature.
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§1. Introduction

The literature on doubly excited states of the hydro-
gen molecule Hy is abundant because it is the simplest
molecular system with electron correlations. The doubly
excited states of Hy play a role of important intermediate
states in many processes such as photoionization, pho-
todissociation, and electron-impact ro-vibrational exci-
tation and dissociative excitation/recombination.!) In
these processes the coupling between the electronic and
nuclear motions can be essential in general, but is dif-
ficult to treat theoretically in a proper way. When
a Franck-Condon transition is important, however, the
adiabatic approximation is very useful. Even when the
electronic-nuclear coupling is important, the adiabatic
approximation is useful both for the physical understand-
ing of the dynamic processes and as the basis of more
sophisticated calculations.

Thus many calculations in the adiabatic approxima-
tion have been done on doubly excited states of Hy, which
are examples of superexcited states. However, the knowl-
edge of these superexcited states is still insufficient. Par-
ticularly, calculations of the higher states belonging to
the series converging to the first excited state of the ion
HQL , which are often called the Q series, are scarce. Fur-
thermore, the knowledge of the states belonging to the
series converging to the second (Q series) or a higher
excited state of Hj is far from sufficient. The contin-
uum processes involving these Qo and higher superex-
cited states seem to have never been calculated properly.

An early attempt of bound-state-type calculations of
the energies of doubly excited @Q; states of Hy and Fermi-
golden-rule calculations of their widths was made by
Bottcher and Docken? for 'LF, 35}, and *II, symme-
tries for internuclear distances R up to 2.5 a.u. More
sophisticated calculations of the resonance parameters
became available later: Collins and collaborators,™®)
Hazi”) and Hazi et al.,®) and Hara and Sato® and Sato

and Hara,'? to name a few. The variational scattering-
type calculation by Takagi and Nakamura!l) used a trial
function involving spheroidal functions. Guberman'?
carried out bound-state-type calculations of one or two
Q: states of each of the I’BE;u and 1’3Hg:u symme-
tries for R up to 6 a.u. The R-matrix method was
then applied to the calculations of doubly excited Q;
states by, e.g., Tennyson and Noble!® and Shimamura
et al.!) This work was recently greatly expanded by Ten-
nyson.'¥) More recent calculations of the lowest five Q;
states of each of the 13X}, 1311y ., and 13A, ., sym-
metries for 0 < R < 5a.u. by Sdnchez and Martin!®
use the Feshbach projection operator formalism with B-
spline functions for an L? description of the nonresonant
continuum. More extensive lists of references are found
in Tennyson!4) and Sénchez and Martin.1%

In the present work we attempt to develop a computa-
tional method useful and efficient for even more extensive
calculations of high-lying members of the Q; series and
even the Q5 series. For this purpose we first choose a set
of basis functions that are centered either on one of the
nuclei or on the center of mass and that include Sonine
polynomials rather than simple Slater-type or Gaussian-
type orbitals. Each subset consisting of basis functions
with a common center is a set of orthogonal functions.
This choice of basis functions leads to highly accurate
energies of the molecular ion H; up to very highly ex-
cited electronic states. These states are then used for
constructing many configurations for the Cl-type calcu-
lations of both low-lying and high-lying doubly excited
H, states using the Feshbach projection operator. The
accuracy of this method is demonstrated for thirty dou-
bly excited Q states of the symmetries 'S}, 11y ,,, and
1Ay, for R up to 8 a.u.

§2. Computational Method

2.1 Analytic wave functions for Hf
We wish to use analytic trial functions for the calcu-
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lations of adiabatic doubly excited Hs states written as
linear combinations of Slater determinants. For this pur-
pose we first write approximate bound electronic states
of H} as linear combinations of a finite number of ana-
lytic basis functions, although adiabatic electronic states
of H can be represented exactly by the sum of known
infinite series of functions.'®) Since we are trying to cal-
culate highly excited H; states, we need many highly
excited Hf wave functions. The usual two-center expan-
sion of these wave functions is inappropriate for highly
excited states, which are not localized around the posi-
tions of the nuclei. The two-center expansion would lead
to the necessity of inclusion of many terms in the expan-
sion, and, in turn, to the difficulty of linear dependence.
Therefore, we use a three-center expansion method.
In other words, we use three types of basis functions
©Nim(rs), s = a,b,c, each centered on nucleus a or nu-
cleus b, or on the center of mass c. Also, we replace the
usual Slater-type or Gaussian-type orbitals by functions

(2ars)' L2H2(2ar) exp(—ars) Yipm (Fs),

(2.1)
involving Sonine polynomials L2 2(z) (or associated La-
guerre polynomials to within a multiplicative constant).
Here, Y, is a spherical harmonic, IV is the order of the
Sonine polynomial, and « is a variational parameter, al-
though we did not fully optimize it in actual calculations.
We tried a few sets of values of & and chose a convenient
and reasonable set; convergence with respect to the size
of the basis set was confirmed.

The functlons gaNlm(rs) (N =0,1,2,--+) contain a
polynomial Z —; cir. and are similar to the hydrogen-
like wave functions (2anrs)lL21Jrl 1(2anrs) exp(—an,rs)
XYim(Fs) (n—1—1=0,1,2,---), where it is to be noted
that a, = Z/n (with Z the effective charge) depends

@Nlm(rs) ==
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on the order of the Sonine polynomial. The set of func-
tions {@nim (rs)}Nim With a common center s and with
a common value of « is a set of orthogonal functions.
This choice of basis functions is seen later to avoid the
difficulty of overcompleteness.

The wave functions W;,,(r) (1 =1,2,3,--
written in terms of eq. (2.1) as

zml Z ZCN](PNlml I‘S)

s=a,b,c N,l

-) of HY are
(2.2)

where the coefficients C'( are determined by diagonal-
izing the Hamiltonian matn*( for H.

The types of basis functions used in the actual cal-
culations are summarized in Table I. There, the val-
ues of [ and « 'are tabulated together with the cen-
ter s of the coordinate; atb stands for the functions
©Nim; (Ta) £ ©nim; (ts). Note that all basis functions
centered on the center of mass ¢ are more diffuse than
the tightest basis function centered on the nuclei a and
b. This choice was made since the higher-lying states
are considered to have a large component of basis func-
tions on ¢ and since the lower-lying states are considered
to have a large component of basis functions on a and
b. This was confirmed by examining the wave functions
actually calculated.

The chosen range of the values of N is also included
in the table. The use of all the basis functions in Table
I leads to the size of the basis set 189 for oy, 168 for oy,
148 for my, 182 for m,, 182 for é,, and 186 for 4,.

The calculated electronic energies of the lo, (1so),
100, (6do), 1oy (2po), and 100, (7po) states are tabu-.
lated together with the quantum defects in Table II as
examples and are compared with exact values calculated
using a code of Power.!®) Very accurate results are seen

Table I. Types of basis functions for H;‘ used in the present calculation. See text for the notation.
og Tg
N =0~ 20 N=0~20 N=0~20
s l «a s «a s l a
a+b 0 2.0 a—b 0 1.5 a—b 1 1.5
c 0 0.5 a+b 1 0.5 a+b 2 0.5
a—b 1 2.0 c 1 0.5 c 2 0.5
a+b 2 2.0 a—b 2 0.5 c 4 0.5
c 2 0.5 c 3 0.5 c 6 0.5
c 4 0.5 c 5 0.5 c 8 0.5
c 6 0.5 c 7 0.5 c 10 0.5
c 8 0.5 c 9 0.5
c 10 0.5
Ty (Sg 611.
N=0~25 N=0~25 N =0~ 20
s l a s l a s l a
a-+b 1 1.5 a+b 2 1.0 a—b 2 1.0
c 1 0.5 c 2 0.5 a+b 3 0.5
c 3 0.5 c 4 0.5 c 3 0.5
c 5 0.5 c 6 0.5 c 5 0.5
c 7 0.5 c 8 0.5 c 7 0.5
c 9 0.5 c 10 0.5 c 9 0.5
c 11 0.5 c 12 0.5 c 11 0.5
c 13 0.5
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to have been obtained. A similar comparison for all the
symmetries o ., Tg ., and d4 ,, has revealed an accuracy
of the present quantum defects higher than ~10~7 ra-
dians for both low-lying and high-lying HJ states up to
the twentieth state for each symmetry, indicating that
the set of basis functions used in this calculation is large
enough for the present purpose.
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2.2 Wave functions for Hs

The neutral hydrogen wave functions ¥(r;,rs) are ex-
panded in terms of Slater determinants consisting of the
electronic states of Hy calculated in the preceding sub-
secion. Singly excited states of Hy were first calculated
as a test of the basis set. Some examples are compared
in Table III with accurate literature values.'”-1®) The
agreement is seen to be satisfactory.

Table II. The electronic energies Fele and the quantum defects p of some states of H; calculated by the basis-function method, as
compared with exact values calculated by the code of Power.!®) R: internuclear distance.

R (a"u') Eelec (a-u-) Iad
Basis func. Exact Error Basis func. Exact Error
0.5 —1.734987910 —1.734988000 9.0E—-8
0.8 —1.554480027 —1.554480094 6.7E—-8
1.0 —1.451786282 —1.451786313 3.1E-8
14 —1.284269240 —1.284269242 2.1E-9
log 2.0 —1.102634210 —1.102634214 4.3E-9
(1s0) 3.0 —0.9108961932 —0.9108961974 4.2E-9
4.0 —0.7960848822 —0.7960848837 1.5E—9
6.0 —0.6786357148 —0.6786357151 2.7TE—-10
8.0 —0.6275703882 —0.6275703886 4.0E-10
0.5 —0.05564506353 —0.05564506359 6.3E—11 0.0048275978 0.0048276012 34E-9
0.8 —0.05578998787 —0.05578998804 1.7E-10 0.0126194206 0.0126194297 9.1E-9
1.0 —0.05592944735 —0.05592944750 1.5E—-10 0.0200888147 0.0200888225 7.8E-9
14 —0.05632708623 —0.05632708630 6.9E—11 0.0412336740 0.0412336776 3.6E—-9
1004 2.0 —0.05727743745 —0.05727743750 5.3E—11 0.0908745787 0.0908745815 2.8E—9
(6do) 3.0 —0.05973766975 —0.05973767855 8.8E—9 0.2138343994 0.2138348258 4.3E-7
4.0 —0.06198005133 —0.06198005137 3.9E-11 0.3194677206 0.3194677224 1.8E-9
6.0 —0.06300090218 —0.06300090408 1.9E-9 0.3656786445 0.3656787293 8.5E—8
8.0 —0.06183729639 —0.06183729924 2.9E—-9 0.3129145834 0.3129147145 1.3E-7
0.5 —0.5168854595 —0.5168854652 5.7E-9
0.8 —0.5427459121 —0.5427459207 8.6E—9
1.0 —0.5648136170 —0.5648136251 8.1E—9
14 —0.6120799716 —0.6120799764 4.8E—9
loy 2.0 —0.6675343897 —0.6675343922 2.5E—-9
(2po) 3.0 —0.7014183325 —0.7014183334 8.6E—10
4.0 —0.6955506390 —0.6955506394 4.4E-10
6.0 —0.6573105590 —0.6573105590 4.2E-11
8.0 —0.6236060155 —0.6236060156 1.0E-10
0.5 —0.04119286866 —0.04119286880 1.4E—-10 0.0320667882 0.0320668003 1.2E-8
0.8 —0.04169665877 —0.04169665896 1.9E-10 0.0742889211 0.0742889368 1.6E-8
1.0 —0.04205554153 —0.04205554167 1.4E-10 0.1039026595 0.1039026711 1.2E-8
14 —0.04261256233 —0.04261256243 9.6E—11 0.1491229565 0.1491229642 7.7E-9
100+, 2.0 —0.04286728579 —0.04286728586 7.3E—-11 0.1695077222 0.1695077281 5.8E—9
(7Tpo) 3.0 —0.04238096556 —0.04238096560 4.5E—-11 0.1304296666 0.1304296702 3.6E—9
4.0 —0.04152939496 —0.04152939499 3.5E—11 0.0603559371 0.0603559400 2.9E-9
6.0 —0.03973194969 —0.03973194972 2.7E—-11 —0.0948800818 —0.0948800794 2.4E-9
8.0 —0.03810936606 —0.03810936620 1.4E-10 —0.2443451818 —0.2443451687 1.3E-8
Table III. Calculated energies (in a.u.) of singly excited states of H» compared with previous calculations. R: Internuclear distance in
a.u.
State R Eelec Eelec Difference
Present Literature
212;" 2.0 —0.71334 —-0.717702 0.00436
iz 2.0 —0.66018 —0.66036 2 0.00018
41 E;" 2.0 —0.65341 —0.65439* 0.00098
111, 14 —0.68434 —0.68833P 0.00399
21, 14 —0.62217 —0.62337P 0.00120
31, 14 —0.60129 —0.60112° —0.00018
411, 1.4 ~0.59974 —0.60023° 0.00049

a) Wolniewicz and Dressler.?)
b) Rothenberg and Davidson.!8)
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For the calculation of doubly excited states converging
to the first excited state of HJ , we obtain eigenvalues of
the Hamiltonian H of the Hy molecule projected onto
the subspace defined by the projection operator

Q(1,2) = (MQ(2), (2.3)

Qi) =1— P(i) = 1 = [log(4)) (Log (i)- (2.4)
In other words, we project out the 1o, orbital of either
electron. Since we are using a set of orthogonal Hy wave
functions, we have only to remove the configurations in-
volving the 1o, orbital.

We investigated the convergence of the energies of the
doubly excited states as the number of configurations is
increased. We confirmed that the energies converged to
enough number of significant figures when we used all ten
lowest HY states of each symmetry to construct the H,
configurations. The total number of configurations used
in the calculations of the eigenvalues of Q(1,2)HQ(1,2)
range from 330 to 400 depending on the symmetry. In-
clusion of additional basis functions in Table I, e.g., two-
center basis functions with larger angular momenta, nat-
urally did not change the Hj results at least within six
significant figures.

Guberman'? has also done similar Q(1,2)HQ(1,2)
calculations with Hy configurations constructed from Hy
wave functions. However, our Hj wave functions in
terms of improved set of basis functions are much more
accurate than his, and also the number of configura-
tions in our calculations is larger than his; he used some
tens of configurations. Guberman calculated only one
or two doubly excited states of each symmetry, whereas
we are particularly interested in higher lying doubly ex-
cited states and therefore we need a larger number of
configurations involving higher Hy states.

§3. Results and Discussion

Figures 1-6 show calculated electronic energies (ex-
cluding the internuclear Coulomb repulsion) of the low-
est five doubly excited states of Hy of the symmetries
154, Mgy, and 'Ag , for the internuclear distances R
up to 8 a.u.; tabulated energies are available from the
author upon request.

Figures 1-6 also include the results of Sinchez and
Martin!®) for comparison. The general trend of the R
behavior of the electronic energies agrees well between
the present results and those of Sinchez and Martin.
However, there is a general tendency that their electronic
energies get larger than ours for R larger than about 3
or 4 a.u. The avoided crossings between some doubly
excited states found at small R by Sénchez and Martin
were confirmed by the present calculations, although the
absolute values of the energies to the left of the cross-
ings were sometimes not reproduced. The reason for the
discrepancy is unknown. Comparison of the present re-
sults with other authors’ calculations is found below in
the text rather than in the figures to avoid complicated
figures.

As was discussed by Sanchez and Martin,!® the elec-
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Fig. 1. Calculated electronic energies (open circles with solid

curve) of the lowest five doubly excited states of Ha of the 12;’
symmetry compared with the results of Sénchez and Martin!5)
(solid circles). The lowest two states of H;’ are shown by dashed
curves. The third and fourth doubly excited states are indistin-
guishable in the inset.

tronic energies of doubly excited states of Hy approach
those of He in the small R limit. Except in the small-
R region the electronic energies except for the lowest
12; energy are nearly parallel to the first excited state
of HY, suggesting their Rydberg nature. At large dis-
tances these doubly excited states become bound even-
tually since the two lowest Hi energies merge eventu-
ally. Because of the projection operator Q(1,2) these
doubly excited bound states have a significance of dia-
batic states, and hence, they are included in Figs. 1-6.
Their energies cross many true adiabatic-state energies
and merge with singly excited states at large R.

3.1 1%t (i) states

The dominant configuration for each of these states
is discussed by Sanchez and Martin!® in the region of
R where they are autoionizing states; it is 2po, 2po, for
1 =1, 2poy3po, for i = 2, 2po,4fo, for i = 3, 2po,dpo,
for ¢+ = 4, and 2po,5fc, for i = 5. The present calcu-
lation showed, however, that the main configuration is
2poy,2poy, for i = 1, 2poydpo, for i = 2, 2po,Spo, for
1 = 3, 2po,bfo, for i = 4, and 2po,6po, for i = 5.
By studying the coefficients of various configurations,
we found that 2po,3po, is not the dominant one for
any autoionizing state, although it mixes strongly in the
first and/or second state. A further, careful examina-
tion of our wave functions reveals a strong mixing be-
tween configurations 2po,ic, and 2po,jo, if the orbitals
ioy, and jo, have the same united-atom angular momen-
tum. A similar trend was found for all other symmetries,
where two configurations with the second electron having
the same united-atom angular momentum are strongly
mixed with each other.
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Fig. 2. Calculated electronic energies (open circles with solid

curve) of the lowest five doubly excited states of Hy of the ! ZI
symmetry compared with the results of Sdnchez and Martin!5)
(solid circles). The lowest two states of Hg‘ are shown by dashed
curves.

Tracing the change in the coefficients of the main con-
figurations as R changes, we found that the main con-
figurations are sometimes switched into different states
in the region of bound states. This can be easily un-
derstood as due to crossings with true adiabatic bound
states.

Our electronic energy for the lowest doubly excited
state ' $F (1) is a little higher, especially at large R, than
Guberman’s energy.'?) Our values are also a little higher
than the results obtained by some other authors, e.g., the
R-matrix calculations by Shimamura et al.) and Ten-
nyson,'®) at the larger R. This could be due to our use
of the projection operator that projects out the 1o, or-
bital, and to the coupling with continuum taken into
account in these R-matrix calculations.

3.2 17 (i) states

The dominant configurations for ¢ = 1-5, accord-
ing to the present calculation, are 2pc,2soy, 2po,ddoy,
2poydsog, 2po,ddoy, and 2poydsoy, respectively, for in-
termediate values of R, although avoided crossings occur
at smaller R between closely spaced pair of levels 1 = 2
and 3 and also ¢ = 4 and 5, and these avoided crossings
interchange the dominant configurations. The configura-
tions 2po,3soy and 2po, 3do, are not the dominant ones
in any state, although they mix strongly in the lowest
three autoionizing states. In the region of bound states
the main configurations are sometimes switched into dif-
ferent states, just like in the case of the IE;F states.

Guberman’s energy of the state 27 (1) agrees well
with the present result. However, his !X1(2) state seems
to correspond to our 1371 (3) state (although the energies
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Fig. 3. Calculated electronic energies (open circles with solid
curve) of the lowest five doubly excited states of Ha of the lHg,
symmetry compared with the results of Sdnchez and Martin1®
(solid circles). The lowest two states of H;‘ are shown by dashed
curves. The third and fourth doubly excited states are indistin-
guishable in the region la.u.<R<3a.u.

of these two states begin to disagree with each other for
R larger than 2.0 a.u.). This must be due to his neglect
of the configuration 2po,4do,, which is the main con-
figuration in '3} (2). The energy of the state ¥ (1)
calculated by Takagi and Nakamural!) agrees well with
the present result up to R = 2.2a.u. Their '3} (2) en-
ergy is a little higher than ours for R beyond 1.8 a.u.
Tennyson’s results'®) for 137 (1,2) agree well with ours
for R less than 4.0 a.u.

3.8 1, () states

The dominant configurations for : = 1-5 were found
to be 2poy2pmy, 2po,dpmy, 2poy,dpmy, 2poybfr,, and
2po,6fm,, respectively, for R = 1.0 and 2.0 a.u., al-
though the third and fourth states interchange the dom-
inant configuration by the time R becomes 4.0 a.u. The
configuration 2po,3pm, is not the main one in any state,
but is mixed strongly in the first and second states.
Also, the configuration 2po,4fm, mixes strongly with
2po,5fm, but the latter is always the main configura-
tion.

Guberman’s energy of the state II (1) agrees fairly
well with the present result. However, his 'II,(2) state
deviates from ours for R larger than 4.0 a.u. This is
considered to be due to his neglect of the configuration
2po,4pm,, which is the main configuration in 'IIy(2).
Our results on '$7(1) agree with Sato and Hara'®) but
are slightly lower than those by Collins and Schneider.?)

3.4 I, (i) states
The main configuration for each of the lowest five
states was found to be 2po,4dry, 2po,5Sdn,, 2po,.bgmy,
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Fig. 4. Calculated electronic energies (open circles with solid

curve) of the lowest five doubly excited states of Hy of the 111,
symmetry compared with the results of Sanchez and Martin!5)
(solid circles). The lowest two states of HJ are shown by dashed
curves. The third and fourth doubly excited states are indistin-
guishable.

2po,6dmg, and 2po, Tgm, for all the R values studied, al-
though the second main configuration has a fairly large
coefficient for all these states except for the second. Es-
pecially, the configuration 2po,3dr, has a large com-
ponent in 'IIL,(1), and 2po,7dm, is also important in
1, (4).

Guberman’s energies for i = 1 and 2 are slightly higher
than the present ones for 1.0a.u.<R<6.0 a.u. His 'TI,(2)
value at R = 1.0a.u. corresponds to our !II,(3) state.
Tennyson’s results’®) on i = 1 and 2 are in generally
good agreement with ours, except that his results do not
show an avoided crossing that both the present work and
Sénchez and Martin found around R = 1.0 a.u.

3.5 1A, (i) states

The main configurations for 'Ay(1-5) are 2pcy5foy,
2poy6fdy, 2p0o,Tidy, 2po,8fd,, and 2po,8id,, respec-
tively, for all the R values studied, and those for
1AL (1-5) are 2po,3dégy, 2pou5ddy, 2po,6ds,, 2po,69d,,
2po,7gdy, for the smaller R values, although the third
and fourth states interchange the dominant configura-
tion by the time R becomes 4.0 a.u. For both the gerade
and the ungerade states the second main configuration
has a large coefficient for all these states. For example,
the configuration 2po,4fJ, mixes strongly into the low-
est gerade state and 2po,4dd, into the lowest ungerade
state.

Sato and Hara'® report the energy of the 1A, (1) state
that is considerably lower than the present results. Ten-
nyson’s results on A, ,,(1,2) are in fairly good agreement
with the present results, but his results do not show an
avoided crossing that both the present work and Sdnchez
and Martin found around R =1.2a.u.
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Fig. 5. Calculated electronic energies (open circles with solid

curve) of the lowest five doubly excited states of Hy of the 1A,
symmetry compared with the results of Sanchez and Martin!®)
(solid circles). The lowest two states of H; are shown by dashed
curves. The third and fourth doubly excited states are indistin-
guishable.
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Fig. 6. Calculated electronic energies (open circles with solid
curve) of the lowest five doubly excited states of Hy of the A,
symmetry compared with the results of Sanchez and Martin!?)
(solid circles). The lowest two states of H;‘ are shown by dashed
curves. The third and fourth doubly excited states are indistin-
guishable.

§4. Conclusion

We have developed a numerical method of three-center
calculations of many high-lying doubly excited states of
Hs, using a set of basis functions involving Sonine poly-
nomials. Numerical examples have been reported for
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thirty Q; states for a wide range of the internuclear dis-
tances, and the reliability of the method has been con-
firmed by comparison with existing data where available.
This method has a prospect of being efficient for calcula-
tions of Q5 and higher states, which would be the subject
of future publications.
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