## TIME-OF-FLIGHT PROFILES OF SINGLY CHARGED FULLERENE-LIKE FRAGMENT IONS PRODUCED IN FAST $He^{2+}-C_{60}$ COLLISION

Yoichi Nakai<sup>\*</sup>, Tadashi Kambara and Yasunori Yamazaki RIKEN (The Institute of Physical and Chemical Research) Wako, Saitama 351-0198

Akio Itoh Department of Nuclear Engineering, Kyoto University Kyoto 606-8501

Hidetsugu Tsuchida Department of Physics, Nara Women's University Nara 630-8506

A number of studies of  $C_{60}$  fragmentation have been performed with various excitation probes.<sup>1-8)</sup> The mass distribution of product ions strongly depends on the energy deposition into  $C_{60}$ . In low-energy deposition events in the collisions with electrons, photons, surfaces and so on, it is believed that an excited  $C_{60}$  ion emits neutral  $C_2$  clusters in a few micro seconds or a longer time scale after excitation.<sup>2-8)</sup> The time-of-flight (TOF) peak profile for each product ion contains information on fragmentation mechanism, such as the kinetic energy release, reaction rate and so on. We have developed a high-resolution TOF mass spectrometer to obtain information on the fragmentation mechanism. Using this spectrometer, we have measured TOF peak profiles in the mass range from  $C_{50}^+$  to  $C_{58}^+$  in the collision with 10MeV He<sup>2+</sup>. We compare them with simulations of sequential C<sub>2</sub> emission based on the Rice-Ramsperger-Klein-Marcus (RRKM) formalism. It is shown that the experimental results support high activation energies and a very loose transition state, as discussed in ref. 8 and 9.

Each experimental TOF peak of fullerene-like fragment ions is asymmetric as shown in Fig. 1. The peaks of fullerene-like fragment ions are skewed to the longer TOF side. This asymmetry becomes more obvious with heavier fragment ions. It is note that the asymmetric shapes do not arise from a mixture of  $C_{60}$  with a different number of  ${}^{13}C$  because the peak widths of fragment ions are much wider than those of  $C_{60}$  ions. The thermal motion of  $C_{60}$  is not the cause of the asymmetric peak, either. Roughly, the peak intensities of  $C_{60-2n}^+$  (n=1 to 5) exponentially decrease with n. This is similar to other studies of fullerene-like fragment ion production.

We simulated the TOF spectrum by sequential  $C_2$  emission using two sets of transition states and activation energies. In Fig. 1, we show the simulated TOF spectra. For each set of transition state and activation energies, we determined the internal energy distribution of parent  $C_{60}^+$  ions by assuming the simple exponential functional form so as to reproduce the peak intensity ratios from  $C_{50}^+$  to  $C_{58}^+$ . When the conventional transition state and activation energies, 7.1eV for  $C_{60}^+$ , are used, the simulated TOF spectrum does not agree with the experimental TOF spectrum, as shown Fig. 1-a. However, when a very loose transition state

<sup>\*</sup>FAX: +81-48-462-4644, e-mail: nakaiy@postman.riken.go.jp

and high activation energy<sup>8,9)</sup> (9.5eV for  $C_{60}^{+}$ ) are used, the simulated result agrees with the experimental spectrum fairly well, as shown in Fig. 1-b. Our results support high activation energies and a very loose transition state and indicate that the dominant production process of singly charged fullerene-like fragment ions is the sequential C<sub>2</sub> emission in the collision of C<sub>60</sub> with fast He<sup>2+</sup> ion.



Fig. 1. Comparison of the experimental TOF spectrum with simulation results. Solid circles correspond to experimental results. Solid lines correspond to the simulations. See text for the difference between (a) and (b)

- 1) Y. Nakai et.al., J. Phys.B: At. Mol. Opt. Phys., 30, 3049 (1997).
- 2) M. Foltin et al., J. Chem. Phys., 107 6246 (1997).
- 3) P. Weis et al., J. Chem. Phys., 104 6246 (1996).
- 4) R. Wörgötter et al., J. Chem. Phys., 101 8674 (1994).
- 5) M. Foltin et al., J. Chem. Phys., 98 9624 (1993).
- 6) R. K. Yoo et al., J. Chem. Phys., 96 911 (1992).
- 7) J. Laskin et al., Chem. Phys. Lett., 242 249 (1995).
- 8) J. Laskin et al., Int. J. Mass Spectrom., 177 L9 (1998)
- 9) C. Lifshitz, Int. J. Mass Spectrom., 198 1 (2000)