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Auger transition rates for metastable states of antiprotonic helium He1 p̄
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The rates of Auger transitions of antiprotonic helium4He1p̄ and 3He1p̄ are calculated by using a varia-
tional scattering method with an elaborate three-body trial function. The shift of the energy levels of these
systems due to the coupling with the Auger-decay channels is also obtained from this calculation. Thus an
improvement is made over the previously calculated nonrelativistic energies. Together with the relativistic
corrections calculated elsewhere, the theoretical transition wavelength between the states (n,l )5(37,34) and
(38,33) of 4He1p̄, for example, is significantly improved to be 713.593 nm, which compares well with the
experimental value 713.57860.006 nm. The calculated Auger lifetime of the level~38,33! is 3.2 ps, as
compared with the value 4.160.2 ps deduced from the measured line broadening. Auger rates are calculated
also using Fermi’s golden-rule formula with a regular Coulomb function with no phase shift for the Auger
electron. The results agree fairly well with the accurate variational results.@S1050-2947~97!05912-X#

PACS number~s!: 36.10.2k, 32.80.Hd
ft
-

e

e
n

ch
in

i

fo

e
la

nt

rk
gh
,

ut
quire

r

k
ro-

-

ce

n
y

re
s

all
udy

a
ar-
i.e.,
cy
de-

s at
ease

igh
he
the
ally

8

R

I. INTRODUCTION

Recently measured time spectra of decay products a
the stopping of antiprotonsp̄ in helium clearly showed de
layed components, and revealed the existence of extrem
long-lived p̄; about 3% of the stoppedp̄ live as long as a few
microseconds as compared with a lifetime of some picos
onds of mostp̄ @1#. These long-livedp̄ states have bee
observed both in4He and 3He @2#, but not in any other
material studied, and are considered to be due to a me
nism @3# similar to that for long-lived kaons and pions
helium already known from bubble-chamber experiments
the 1960s@4#.

The scenario in the independent-particle picture is the
lowing. Most of thep̄ stopped in helium in the process

He1 p̄→ He1p̄1e2 ~1!

occupy highly excited orbitals in He1p̄, with principal quan-
tum numbersn aroundn* 5AM* /me.38, whereM* is the
reduced mass betweenp̄ and helium. Thesep̄ cascade down
to lower and lower orbitals by the emission of an Aug
electron, by radiative transitions, and by energy and angu
momentum transfer in collisions of He1p̄ with ambient He
atoms, and eventually decay in the intra-atomic encou
with the helium nucleus either in a high-n s state or in a
low-n state. The neutrality of He1p̄ and the considerable
energy difference between sublevelsl with the samen pre-
vent prompt collisional deexcitation and collisional Sta
mixing, unless the density of He atoms is extremely hi
The radiative transitions from high-n levels are also slow
i.e., of the order of microseconds forn around 30 to 50~see,
e.g., Ref. @5#!.

*On leave from Joint Institute for Nuclear Research, 1419
Dubna, Russia.
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search~RIKEN!, Hirosawa, Wako, Saitama 351-01, Japan.
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In fact, these He1p̄ states are not true bound states, b
are resonance states in the sense that the electron can ac
from p̄ a large enough energyDE to be emitted as an Auge
electron without an external perturbation:

~ He1p̄!nl→~ He21p̄!n8 l 81e2. ~2!

The resultant ion He21p̄ undergoes rapid collisional Star
mixing because of the degeneracy of sublevels of this hyd
genic ion. The~internal! Auger process~2! is fast for most
~He1p̄) nl , but is strongly suppressed for highn, nearly cir-
cular (l .n21) orbits, for which the condition of large
enoughDE ~and hence large enoughDn5n82n) automati-
cally excludes small-D l transitions; note that the Auger pro
cess occurs efficiently only for smallD l (5 l 82 l ), i.e., only
for small angular-momentum transfer to the electron, sin
an electronic wave function with high angular momentuml e
~greater than about 2! would have a small value in the regio
of the p̄ wave function, and would lead to inefficient energ
exchange betweenp̄ and the electron.

Thus the long-livedp̄ are considered to be those that a
captured into high-n, nearly circular states. The Auger rate
are crucial in distinguishing between long- and short-livedp̄,
and in determining the fraction of the former among
stoppedp̄. The Auger rates are also indispensable to a st
of the whole cascade process.

Subsequent experiments@6,7# used a new technique of
laser-induced transition from a long-lived or metastable p
ent state to a daughter state that ought to be short lived,
ought to have a high Auger rate. If the laser frequen
matches the transition energy, a spike is observed in the
layed component in the time spectrum of decay product
the time when the laser is shot, because of an abrupt incr
in the number of short-lived He1p̄. This technique allows
direct measurements of transition wavelengths with a h
relative accuracy of some ppm. If the Auger rate of t
daughter state is very high, its Auger width may exceed
laser bandwidth, and may be determined experiment
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4588 56V. I. KOROBOV AND ISAO SHIMAMURA
from the broadening of the line profile of the spike intens
as a function of the laser wavelength, as was indeed d
recently@7#. This technique has been further developed i
few different ways, e.g., a double-resonant laser-indu
transition from a long-lived to a short-lived state via an
termediate long-lived state@8#, and the use of impurity hy-
drogen molecules to shorten the lifetime of otherwise me
stable states and to observe new transitions inaccessib
the original laser-induced transition technique@9#. The Au-
ger rates of He1p̄ states near the borderline between lon
and short-lived states play a significant role in the proces
occurring in these experiments.

In spite of the importance of the Auger rates of He1p̄,
there has not been much effort devoted to accurate calc
tions of them until recently. The early calculation for som
circular orbitals by Russell@10# was based on Fermi’s golde
rule, with simple wave functions, and with thep̄-electron
Coulomb interaction chosen as the transition operator.
unpublished work by Ohtsuki, quoted in Refs.@11# and@12#,
uses more accurate wave functions. Recently, Fedotov,
tavtsev, and Monakhov@13# and Révai and Kruppa@14# used
improved open-channel wave functions representing the fi
state of the Auger process and fairly elaborate bound-st
type wave functions representing the initial state; the diff
ence between the full HamiltonianH and the initial-state
energy« r causes the Auger transition in their approaches

Since an Auger-allowed state of He1p̄ is a resonance
state, which is a continuum state, its energyEr and the Auger
decay widthG ~which is related to the Auger ratel by
l5G/\) are defined as the position and the width of a re
nance in the scattering process

e21 He21p̄. ~3!

If one assumes Born-Oppenheimer~BO! separation of the
electronic motion from the relative He21-p̄ motion, which is
a fairly good approximation for high-n, high-l states, the
resonance states turn into molecule-type bound st
@5,15,16#, which may be called BO states. The kineti
energy operator for the He21-p̄ motion introduces two kinds
of nonadiabatic effects. The first is the coupling with diffe
ent bound BO states. This effect was taken into accoun
detail in a previous work using an elaborate analytic va
tional trial function, leading to a convergence of eigenvalu
« r of the Hamiltonian matrix within;1027 a.u. @17#. The
other effect is the nonadiabatic coupling with continuum
electron-emission channels, which leads both to an Au
process and to a shiftDE5Er2« r of the metastable level
This latter effect of coupling with continuum may be studi
by a scattering-type approach to process~3!.

In this work we apply to the scattering problem~3! the
Kohn variational method with an elaborate trial functio
similar to the one used in Ref.@17#, but augmented by term
representing an Auger-decay channel; only a single cha
that contributes most to the Auger rate is taken into acco
and hence the only scattering parameter to be consider
the phase shift.

Fermi’s golden rule is a good approximation if the corre
transition operator is used, and if an accurate and consis
set of initial and final wave functions for the Auger transitio
are used, as is evident from the Feshbach projection-ope
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formalism for the resonance parameters@18#. Furthermore,
the regular Coulomb function may be used for the Aug
electron to a good approximation if the background ph
shift is small. Therefore, we also try this simplified Ferm
golden-rule approach, and compare the results with th
from the Kohn variational method.

II. FERMI’S GOLDEN RULE

The Fermi golden rule used here for the rate of Aug
transition from a given initial bound stateC r with an energy
« r to a final continuum stateCA reads

G52pr~« r !u^CAuH2« r uC r&u2, ~4!

whereH is the three-body Hamiltonian, andr(«) is the den-
sity of final states per energy«. In early papers, the operato
H2« r was often replaced by the Coulomb interaction b
tweenp̄ and the electron. The present work, however, avo
this approximation.

A. Initial state of Auger transition

The initial-state wave functionC r(R,r ) is expanded in
terms of molecule-type basis functions ofR, the position
vector of p̄ with respect to He21, andr , the position vector
of the electron with respect to the center of mass ofp̄ and
He21. A state with the total orbital angular momentumL, its
projectionM onto the space-fixed quantization axis, and t
total spatial parityh may be written as

CM
Lh~R,r !5 (

m50

L

Fm
Lh~R,r ,u!DMm

Lh ~F,Q,w!, ~5!

where

DMm
Lh ~F,Q,w!5F 2L11

16p2~11d0m!
G 1/2

@DMm
L ~F,Q,w!

1h~21!L2mDM ,2m
L ~F,Q,w!# ~6!

are the symmetrized WignerD functions;R, r , andu are the
magnitudes of and the angle between the vectorsR and r ;
and F, Q, and w are the Euler angles of a moving bod
fixed frame connected with the three-body configuration
follows: Thez8 axis lies alongR, and they8 axis lies in the
plane ofR and r . The componentsFm

Lh(R,r ,u) are labeled
by the subscriptm50, 1, 2, . . . corresponding to thes, p,
d, . . . states in the Born-Oppenheimer approximation, a
defining the projection of the total orbital angular momentu
onto thez axis of the body-fixed frame.

Each functionFm
Lh is expressed as a linear combinatio

@17#

Fm
Lh5 (

n1n2n3

cn1n2n3
un1n2n3

~m! ~R,je ,he!

5@~je
221!~12he

2!#m/2Rmexp$2~a1bje!R%

3 (
n1n2n3

cn1n2n3
Rn1je

n2he
n3 ~7!
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56 4589AUGER TRANSITION RATES FOR METASTABLE . . .
of square-integrable functions ofR and spheroidal coordi
natesje5(r a1r b)/R and he5(r a2r b)/R, r a and r b being
the distances of the electron from the helium nucleus
from the antiproton. Herea andb are nonlinear variationa
parameters. The linear variational parameterscn1n2n3

, and

hence the wave functionC r in Eq. ~4!, and the correspond
ing energy value« r are determined according to th
Rayleigh-Ritz method, i.e., by diagonalizing the Hamiltoni
matrix; see Eq.~15! in Sec. III. Although the states of ou
concern are not true bound states, some lowest eigenva
are expected to show a rapid ‘‘asymptotic convergenc
unless too manym components are included in expansi
~5!. The dependence of the eigenenergies on the numbe
m components included was studied in Ref.@17#, and indeed
a rapid convergence was observed; the three-componen
proximation already turned out to be highly accurate.

B. Auger-electron emission channels

We consider the final state of the Auger transition
which the system He21p̄ is left in a hydrogenic state
xn8 l 8(R). Thus we write the continuum wave function in
single-channel form

CA~R,r !5ckle
~r !xn8 l 8~R!$Yl 8^ Yl e

%LM~R̂, r̂ !, ~8!

where the angular eigenfunction$Yl 8^ Yl e
%LM(R̂, r̂ ) is ob-

tained by couplingl8 and le into L . Since the Auger rate is
the highest for the smallest possible value of the electro
orbital angular momentuml e , as explained in Sec. I, we
choose only an electronic channel satisfying the condit
l e5uL2 l 8u. Note that, for this choice, the spatial pari
h5(21)l 81 l e of the final state is the same as for the init
state, as it should be. Wave functionsckle

(r ) of the Auger
electron of various levels of accuracy may be considered.
our calculations using Fermi’s golden rule~4!, we choose the
simplest form, namely, (kr)21Fl e

(kr;2me /k) involving the

regular Coulomb functionFl e
, with no scattering phase shif

k is the wave number of the Auger electron. In other wor
we choose forCA in Eq. ~4! the function

F~R,r !5
1

kr
Fl e

~kr;2me /k!xn8 l 8~R!$Yl 8^ Yl e
%LM~R̂, r̂ !.

~9!

The normalization of this wave function is such th
r(«)52mek/p as in the case of the free wave.

In Sec. III we use another, similar function

G~R,r !5~12e2a8r ! l e1b811
1

kr
Gl e

~kr;2me /k!xn8 l 8~R!

3$Yl 8^ Yl e
%LM~R̂, r̂ !, ~10!

defined in terms of the irregular Coulomb functionGl e
and a

factor ~involving artificial parametersa8 andb8) for cutting
off the singular part ofGl e

near the origin. Since this cutof

factor tends to unity asr→`, a linear combination ofF and
G would represent a nonzero phase shift.
d
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’’

of

ap-
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n

or
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Naturally, functions~9! and ~10! in the atomic represen
tation are expressed in terms of the Jacobi coordina
(R, r ). The angular function$Yl 8^ Yl e

%LM(R̂, r̂ ), however, is
expressible as a linear combination of the symmetriz
WignerD functions~6!, the coefficients being functions onl
of the variableu ~see Appendix A!. Therefore, these func
tions may be treated on the same footing as the molec
representation~5!.

III. VARIATIONAL SCATTERING APPROACH

More accurate calculations are possible by applying va
tional methods for scattering to process~3! @19#. For this
purpose we adopt a variational trial function

Cv5f11Kf21 (
j 53

N12

cjf j , ~11!

where

f15F~R,r !, f25G~R,r !, ~12!

and where$f j% for j >3 are square-integrable basis fun
tions un1n2n3

(m) (R,je ,he)DMm
Lh (F,Q,w) of the same form as

are used for calculatingC r for Fermi’s golden rule. The
coefficientsK and$cj% are variational parameters, the form
having the meaning of the tangent of the phase shiftd for
electron scattering~3!. The variational procedure may be d
scribed by introducing matricesM , A, and B, whose ele-
ments are defined by

Mi j 5^f i uH2«uf j& for i , j >1,

Ai j 5^f i uHuf j&, Bi j 5^f i uf j& for i , j >3.

We also define a matrixM05A2«B and vectorsw1 andw2
of lengthN composed of matrix elementsMi1 and Mi2 for
i>3.

The variationally optimized phase shiftdv is determined
by the condition that Eq.~11! satisfies the Schro¨dinger equa-
tion in the subspace of functions spanned by$f j% j >2 @19#. In
other words, we demand that the Schro¨dinger equation pro-
jected onto this subspace be satisfied. This leads to a sy
of coupled linear equations

w11w2K1M0c50,
~13!

M211M22K1w2
Tc50

for K, and the vectorc composed of$cj%. The optimized
value of the tangent of the phase shift is calculated by

tandv5K1cTM0c. ~14!

This method is referred to as the Kohn variational method
similar method, in which the roles off1 and f2 are inter-
changed, is called the inverse-Kohn method, and provide
variationally optimized cotdv .

Resonance structures appear indv close to matrix eigen-
values« r defined by

Axr5« rBxr , ~15!
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4590 56V. I. KOROBOV AND ISAO SHIMAMURA
i.e., close to the energies of the ‘‘bound states’’C r . A fit of
dv to the Breit-Wigner formula for an isolated resonan
would produce a set of resonance positionEr , resonance
width G, and background~or off-resonance! phase shiftdb .
In general, there is a resonance shiftDE5Er2« r from the
energy« r of C r , or of Eq. ~15!. Note that the coefficien
vector c determined from Eq.~13! is independent of the
bound-state vectorxr in Eq. ~15!, sincec is determined to
optimize the whole continuum state~11!.

In actual numerical calculations in this paper, we use
other procedure nearly equivalent to the Kohn method w
the Breit-Wigner fitting. This procedure may be derived
working directly on the matricesM , A, andB, as shown in
Appendix B.

IV. CALCULATIONS AND RESULTS

The matricesA and B have been calculated to a hig
precision using the quadruple precision arithmetic, as
scribed previously@17#. The matrix elementsMi j ( i or
j 51,2) involving Coulomb functions have been evaluat
by numerical integration over a three-dimensional configu
tion space of the internal coordinates with the use of Gau
ian quadratures, and the final accuracy of these matrix
ments is about five significant digits or higher. This low
accuracy than forA and B causes no problem since all th
three quantitiesDE, G, and db in Appendix B need to be
calculated only to a few significant digits.

Some test calculations using various different values
the cutoff parametersa8 andb8 in Eq. ~10! have been car-
ried out. These tests have resulted in a fixed, empir
choice (a852, b8515! for the purpose of stable numeric
results.

The antiprotonic helium states that play an important r
in the experiments summarized in Sec. I are those molec
statesC r in which by far the main Born-Oppenheimer co
figuration consists of the 1s electron orbital and a ro
vibrational He21-p̄ state (j , v), where the rotational quan
tum numberj is practically the same asL in this paper@5#.
In terms of an approximate atomic-type representation (n, l )
of the He21-p̄ orbital, the vibrational quantum numberv
corresponds ton2 l 21 @5#. The angular-momentum corre
spondence reads asj 5 l ; note thatL is a good quantum
number, but j and l are not. Since the common electro
orbital 1s need not be specified explicitly, an Auger tran
tion may be specified by the simplified notatio
(n,l )→(n8,l 8) as in Eq.~2!.

For an Auger electron to be emitted in process~2!, the
energy of the final state ( He21p̄)n8 l 8 must be lower than tha
of the initial state ( He1p̄)nl . Figures 1 and 2 of the leve
diagrams indicate that this energy condition sets a lo
limit ( D l )min to D l 5 l 82 l . This lower limit depends on the
initial state. For a particular initial state the Auger proce
with D l 5(D l )min has the highest rate, as was explained
Sec. I. Calculations were carried out only for such tran
tions.

We studied the dependence of the Auger rates on
number ofm components retained in the molecular expa
sion ~5!. Table I presents the results from both Ferm
golden rule and the variational method and for some tra
tions with different values ofD l . The dependence is muc
-
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stronger than that of the energy values studied in Ref.@17#.
When the number ofm components reaches the value ofD l ,
the Auger rate becomes close to the converged value. Whil
the two methods provide similar results, the variational
method is slightly more stable with respect to the change in
the basis set.

FIG. 1. Energy-level diagram of4He1p̄ states designated by
approximate quantum numbers (n, l ); the calculated Auger rate
a@b#5a310b s21 is attached to each level. Open circles represent
circular states (n8, l 85n821! of 4He21p̄. Each arrow connecting a
4He1p̄ level (n, l ) and a4He21p̄ level (n8, l 8) indicates an Auger
process with the minimum angular-momentum changeD l 5 l 82 l
possible for that initial state.

FIG. 2. Same as Fig. 1, but plotted for3He1p̄ and 3He21p̄; see
the caption of Fig. 1.
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56 4591AUGER TRANSITION RATES FOR METASTABLE . . .
A by-product of the variational approach is the bac
ground phase shift for electron scattering on ( He21p̄)n8 l 8 in
the energy range of the considered resonances. The b
ground phase shiftdb is as small as;1022 rad or less for the
calculated cases whereD l>2, as is expected from the hig
centrifugal barrier for an electron withl e>2, which prevents
the electron from interacting strongly with He21p̄. The
small db explains the fairly good performance of Fermi
golden rule with the regular Coulomb function for the Aug
electron in the final state.

All the states of He1p̄ calculated in a previous work@17#
were treated as bound states. That would lead to some
certainties in the evaluation of the energy values of the st
with Auger width greater than, say, 1027 a.u., since the cou
pling with Auger-decay channels may not be negligible
these states. Using the present variational scattering
proach, improved values of the nonrelativistic energies
be obtained by adding the level shiftDE to the bound-state
energy « r . Table II compares the energy« r of
(4 He1p̄)n538,l 533 from the bound-state approach with th
shift-corrected energyEr from the variational-scattering ap
proach, for a few choices of the basis set differing mainly
the componentsm>1. The corrected energy is at least o
digit more stable than the uncorrected one, and the correc
ranges from 231026 to 631026 a.u.~with either positive or
negative sign!, which is of the same order of magnitude asG.

The calculated shift-corrected energiesEr , Auger widths
G, and Auger ratesl are summarized in Table III fo
4 He1p̄ and in Table IV for3 He1p̄. The typical size of the
basis set isN52228 for D l 52, N52278 for D l 53, and
N52374 forD l>4. The energiesEr were found to be stable
at least to the last digit shown in the tables, and are con

TABLE I. Dependence of the Auger rates in s21 on the number
of m components retained in the molecular expansion~5! for three
states (n, l ) of 4He1p̄; mmax is the maximum value ofm retained,
andN is the number of basis functions in Eq.~11!. FGR: Fermi’s
golden rule. VM: variational method.a@b#5a310b.

(n,l ,D l ) (38,33,2) (39,34,3) (37,34,4)
mmax N FGR VM FGR VM FGR VM

0 1200 1.95@9# 1.97@9# 1.76@6# 1.75@6# 4.33@2# 6.14@2#

1 1648 4.01@11# 3.24@11# 1.65@8# 1.65@8# 4.15@4# 4.41@4#

2 1942 3.67@11# 3.08@11# 7.58@8# 7.70@8# 1.26@5# 1.26@5#

3 2158 3.65@11# 3.08@11# 7.95@8# 7.67@8# 1.89@5# 1.85@5#

4 2374 1.87@5# 1.85@5#
-

ck-

n-
es

r
p-
n

on

d-

ered to be accurate to all digits shown. We estimate the
rors in the Auger widths from the stability of the numeric
results as;5% for the cases withD l 52, ;15% forD l 53,
;50% forD l 54, and even larger forD l 55. There are some
exceptions, however, where the convergence was unsati
tory. Such cases are enclosed in curly brackets in Table
and IV. Most of the unsatisfactory cases are either for
tremely narrow Auger widths, for which the absolute error
actually small, or for states in the upper-right corner in t
tables. We suspect that the reason for the latter case mig
the overlap of such a resonance with one involving an
cited electronic orbital. Tables III and IV clearly demonstra
the extremely strong dependence of the Auger widthG on
D l ; roughly speaking,G.1025;1027 a.u. for D l 52,
G.1026;1029 a.u. for D l 53, G.10210;10213 a.u. for
D l 54, andG,10213 a.u. forD l 55. Figures 1 and 2 of the
energy-level diagram include the calculated Auger rates.

Table V compares the Auger rates of some selected st
obtained in this paper with other theoretical calculations
thorough comparison reveals that the method of Fedo
et al. @13#, which uses basis sets for the initial state includi
up to 600 atomic-type basis functions and a scattering w
function for an effective potential for the final state, the in
tial and final wave functions being orthogonal to each oth
produces results in agreement with the present values w
about 20% except for a few cases. The results of Re´vai and
Kruppa@14#, who employ initial-state wave functions of Re
@17#, including up to 1230 terms withm<2, also agree well
with the present results in most cases. It was found in
present careful numerical investigation that the calcula
Auger rates depend strongly on the quality of the wave fu
tion. In this sense we believe that our results are the m
accurate to date.

A stringent test on the validity of the present variation
approach would be a comparison with experimentally de
mined Auger widths. A candidate for this test found in t
literature is the broadening of the line profile for a transiti
(n,l )5(37,34)→(38,33) of 4 He1p̄ @7#. The full line width
at half maximum of 0.06760.006 nm was much larger tha
the laser bandwidth of 0.007 nm. This broadening is cons
ered to be due to the Auger width of the daughter st
(38,33), since that of the parent state (37,34) is six order
magnitude smaller according to Table III of this paper. Fro
this broadening the authors of Ref.@7# deduce a lifetime
4.160.2 ps of the daughter state, which is to be compa
with the valuel2153.2 ps calculated from Table III. The
experimental Auger rate is included in Table V. The me
e

.

TABLE II. Resonance parameters for4He1p̄(L533,v54) calculated with four basis sets differing in th
sizeN, and a nonlinear parameterb in Eq. ~7! for Fm

Lh with m>1. « r : eigenvalue of the Hamiltonian matrix
in the bound-state approach.Er : energy-shift corrected variational estimate of the resonance energyG:
resonance width. All quantities are in atomic units.a@b#5a310b.

Bound-state approach Variational-scattering approach
« r Er G

First set (N52388,b50.8) 22.847 320 6 22.847 322 9 7.26@26#

Second set (N52270,b50.5) 22.847 329 8 22.847 323 9 7.47@26#

Third set (N51934,b50.5) 22.847 328 3 22.847 323 6 7.43@26#

Fourth set (N52172,b50.4) 22.847 329 8 22.847 323 8 7.45@26#
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TABLE III. Level-shift-corrected nonrelativistic energiesEr ~in a.u.!, Auger widthsG ~in a.u.!, Auger
ratesl ~in s21), and the minimum angular-momentum changeD l in Auger transitions for metastable state
of 4He1p̄. The antiprotonic atomic-orbital quantum numbers (n, l ) are related to the rovibrational quantu
numbers (L, v) by n5v1L11 and l 5L. The convergence was unsatisfactory for the values in c
brackets.a@b#5a310b.

v50 v51 v52 v53 v54

L531 Er 23.507 634 95 23.364 651 64 23.238 577 23.127 333
G 1.5@211# 2.9@28# 1.2@25# $3.5@27#%
l 6.1@5# 1.2@9# 4.9@11# $1.4@10#%
D l 4 3 2 2

L532 Er 23.353 757 80 23.227 676 31 23.116 678 94 23.019 058 22.933 090 6
G 2.1@212# 5.3@29# 9.0@28# 1.4@25# $4.8@27#%
l 8.7@4# 2.2@8# 3.7@9# 5.8@11# $2.0@10#%
D l 4 3 3 2 2

L533 Er 23.216 244 20 23.105 382 64 23.007 979 02 22.922 444 12 22.847 323 8
G 2.9@213# 5.0@212# 5.8@29# $1.4@27#% 7.5@26#
l 1.2@4# 2.1@5# 2.4@8# $5.7@9#% 3.1@11#
D l 4 4 3 3 2

L534 Er 23.093 466 87 22.996 335 42 22.911 180 90 22.836 524 54 22.771 011 23
G 2.1@213# 4.9@213# 4.6@212# 3.2@29# 1.9@28#
l 8.8@3# 2.0@4# 1.9@5# 1.3@8# 7.7@8#
D l 5 4 4 3 3

L535 Er 22.984 020 94 22.899 282 16 22.825 146 79 22.760 233 30 22.703 283 10
G $9.0@218#% 1.6@216# 2.7@213# 1.7@212# 1.1@211#
l $3.7@21#% 6.4@0# 1.1@4# 7.0@4# 4.7@5#
D l 5 5 4 4 4
it

fo
-

e to
al-

he
sured line center lies at 713.57860.006 nm@7#, whereas the
transition wavelength calculated from Table III~including
the effect of the level shiftsDE) is 713.520 nm. If corrected
for the relativistic effect reported elsewhere@20#, the theo-
retical value changes into 713.594 nm, which agrees w
experiment within;20 ppm.

In conclusion, we have applied a variational method
scattering to Auger widthsG and shift-corrected nonrelativ
istic energiesEr of some states of4He1p̄ and 3He1p̄ for
h

r

which the minimum possible angular-momentum changeD l
in Auger transitions is 2, 3, 4, or 5. The calculated data onEr
are extremely accurate. Those onG should be considerably
accurate with a few exceptions, the exceptions being du
the subtlety of the Auger width calculations. Indeed, the c
culated Auger width is quite sensitive to the quality of t
wave function. The order of magnitude ofG depends
strongly on the value ofD l , and ranges from 1025 to 10217

a.u., the smaller for the largerD l .
s
m
urly
TABLE IV. Level-shift-corrected nonrelativistic energiesEr ~in a.u.!, Auger widthsG ~in a.u.!, Auger
ratesl ~in s21), and the minimum angular-momentum changeD l in Auger transitions for metastable state
of 3He1p̄. The antiprotonic atomic-orbital quantum numbers (n, l ) are related to the rovibrational quantu
numbers (L, v) by n5v1L11 and l 5L. The convergence was unsatisfactory for the values in c
brackets.a@b#5a310b.

v50 v51 v52 v53 v54

L531 Er 23.348 832 11 23.219 507 18 23.106 142 2 23.006 891 22.919 764 4
G 1.0@211# 1.7@28# $8.6@27#% 3.6@25# 2.5@26#
l 4.3@5# 6.9@8# $3.5@10#% 1.5@12# 1.0@11#
D l 4 3 3 2 2

L532 Er 23.207 672 27 23.094 450 92 22.995 404 31 22.908 857 22.833 065 6
G 1.6@212# 2.4@211# 1.6@28# $2.6@25#% $1.6@25#%
l 6.5@4# 9.9@5# 6.8@8# $1.1@12#% $6.6@11#%
D l 4 4 3 3 2

L533 Er 23.082 114 08 22.983 373 10 22.897 192 26 22.821 962 87 22.756 217 37
G 8.4@216# 2.6@212# 2.0@211# 7.9@29# 5.1@28#
l 3.5@1# 1.1@5# 8.4@5# 3.3@8# 2.1@9#
D l 5 4 4 3 3

L534 Er 22.970 628 27 22.884 912 60 22.810 261 07 22.745 174 13 22.688 292 86
G 1.0@216# 1.2@215# 1.4@212# 7.1@212# 6.6@211#
l 4.3@0# 4.9@1# 5.8@4# 2.9@5# 2.7@6#
D l 5 5 4 4 4
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TABLE V. Comparison of Auger rates variationally calculated for some states of4He1p̄ with other
theoretical and experimental results.a@b#5a310b s21.

(n,l ,D l ) Ohtsukia Ohtsukib Fedotovc Révai d Present Yamazakie

(38,33,2) 2.7@11# 3.1@11# 2.460.1@11#

(38,34,3) 8.5@7# 2.2@8# 1.4@8# 1.3@8# 1.3@8#

(39,34,3) 1.8@9# 2.5@9# 8.3@8# 7.7@8#

(37,34,4) 2.7@4# 2.9@6# 2@5# 7.4@4# 1.9@5#

(39,35,4) 6.7@2# 3.4@5# 1.0@5# 2.8@5# 7.0@4#

aUnpublished, quoted in Ref.@11#.
bUnpublished, quoted in Ref.@12#.
cReference@13#.
dReference@14#.
eExperimental: Ref.@7#.
k-
n

l
f
t

m

y

p
de
ACKNOWLEDGMENTS

We would like to thank Professor T. Yamazaki for ma
ing experimental results available to us prior to publicatio
We are also thankful to J. Re´vai for numerous and helpfu
discussions. One of us~V.I.K.! acknowledges the support o
Science and Technology Agency of Japan and would like
express his gratitude to the staff of RIKEN for the war
hospitality and help in computing.

APPENDIX A: ATOMIC VS MOLECULAR
REPRESENTATION

A relation between the atomic representation~8! and the
molecular representation of form~5! may be established b
using the formula

$Yl ^ Yl e
%LM~R̂, r̂ !5A2p (

m50

l e

Gll e

LmDMm
Lh Yl em~u,0!,

where the coefficientsGll e

Lm are defined by

Gll e

Lm5F S 2

11d0m
D S 2l 11

2L11D G1/2

^Lmu l0l em&

in terms of a Clebsch-Gordan coefficient. Thus Eq.~8! may
be cast into a form

CA~R,r !5A2pckle
~r !xn8 l 8~R!

3 (
m50

l e

DMm
Lh ~F,Q,w!Gl 8 l e

Lm Yl em~u,0!,

which is to be compared with Eq.~5!. Equations~9! and~10!
may also be written in a similar form.

APPENDIX B: VARIATIONAL PROCEDURE
FOR RESONANCE PARAMETERS

Here we sketch the method of calculating resonance
rameters, working directly on the matrices and vectors
fined in the text. First the inverse matrixM0

21, for « close to
« r of Eq. ~15!, is represented in a form
.

o

a-
-

M0
215M0

211
1

« r2«
xrxr

T ,

whereM0
21 is the inverse matrix of rankN21 in the sub-

space that isB orthogonal toxr , and varies slowly with the
change in«. We also introduce quantities

w̄sr5xr
Tws ~s51,2!.

Solving Eqs.~13! for K, we have

K52
M212w2

TM0
21w1

M222w2
TM0

21w2

52
~« r2«!G212w̄2r w̄1r

~« r2«!G222w̄2r
2

,

where

G2s5M2s2w2
TM0

21ws ~s51,2!.

The resonance positionEr and the resonance widthG are
calculated from a poleEr2 iG/2 of the scattering matrix
S5(11 iK )(12 iK )21. Retaining only two leading terms in
the slowly varying functionw̄2r w̄sr of « near «5« r and
writing

w̄2r w̄sr.w̄2r
0 w̄sr

0 2~« r2«!
d~w̄2r w̄sr!

d« U
«5«r

~s51,2!,

we find that

DE5Er2« r52
w̄2r

0 ~w̄1r
0 Ḡ211w̄2r

0 Ḡ22!

Ḡ22
2 1Ḡ21

2
,

G/25
w̄2r

0 ~w̄1r
0 Ḡ222w̄2r

0 Ḡ21!

Ḡ22
2 1Ḡ21

2
,

tandb5G21/G22,

where

Ḡ2s5G2s1
d~w̄2r w̄sr!

d« U
«5«r

~s51,2!.
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