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Stable complex-rotation eigenvalues that correspond to no full resonances in scattering:
Examples in positron scattering by the helium ion
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Hyperspherical close-coupling calculations f®rand P-wave positron scattering by Héons produce no
full resonances in the eigenphase su(i) in the two regions of energ§ where stable eigenvaluds,
—il'/2 with largel” were found previously by the complex-rotation methi@&RM); S(E) increases only by one
radian in the loweE region, and even decreases almost monotonically in the highegion, implying time
advance, rather than time delay, due to the collision. However, the peaks found in the trace of time-delay
matrix, Tr Q(E), are consistent with the CRM eigenvalues. This suggests that these eigenvalues indeed repre-
sentS-matrix poles in the complek plane, but that their effects on scattering are almost masked by the
backgrounds due to the largd’. This work uses a general relation QE)=2%(ds/dE), proved here foany
functional formof §(E), and hence, both on and off resonance. This is a generalization of the well-known
single-channel time-delay formula and of the multichannel formula proved previously for the Breit-Wigner
resonance with a constant backgrousithatrix.
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I. INTRODUCTION pseudostates centered on the fite. No serious discrepancy
The complex-coordinate rotation methd@®RM) has €XISts between the CRI8,4] and HSCC resultgs, g for the

proved to be powerful as a means to calculate simultaneousRPSitions and total widths of the narrower resonances.
the positions and total widths of resonances in atomic phys-, | "€ Present work sheds new light on the seemingly incon-
ics [1,2]. With this method, the relative distancg between sistent results on the possible broad resonances found in the
each pair of particles andj in the system is replaced by a literature; they are shown to be _conS|stent, in fact. We im-
complex variabler;exp(i¢). Then, the HamiltoniarH is prove over and extend the previous I-!SCC calculations by
transformed into a non-Hermitian operatdf6). The com- co_uphng a larger number of hyperspherical channels, by cov-
plex eigenvalues of a matrix ¢1(6), constructed in terms of erng the energy range up to the(Rs3) threshold, and by
square-integrabléor L?) basis functiongug with variable going over to theP wave. We analyze the calculated results

parameters, are found to be stable against the change in thneterms of the time-delay matrix introduced by Sml).
rotation angled, in the size of the basis set, and in the non-

linear parameters ifug}, if these eigenvalues correspond to Il. THEORY

S-matrix polesk,—il'/2 for H(#=0) in the complex-energy

plane. Each of them normally produces a resonance at the A. Hyperspherical close-coupling method

real energyE, with a total widthI', unlessI" is too large The HSCC method for three-body systems was described
[1,2]. previously[6,10]. Here, only a brief reminder is given. The
Ho [3] and Ho and Yan[4] used the CRM for the hyperradiug is defined byp?=r2+r3 in terms of the electron
positron-involving three-body systerfe He?*, and found  (r,) and positron(r,) coordinates relative to the particle.
stable eigenvalues dfi(¢) (for all partial wavesL<6) far  \we choosep to be the reaction coordinate throughout the
from the real energy axis as well as close to it. In fact, thecollision since the asymptotic channels of interest hete,
Swave eigenvalues with largé had been suggested by the +He* and Ps+H#&" (Ps denoting the positroniugfe™), are
stabilization-method calculation of real eigenvalues of thepoth represented by large valuesgof
matrix of H(#=0), using L? basis functiong5]. In detailed First, adiabatic separation is made between the motion in
S-wavescatteringcalculations with eigenphase-sum analysisp and that in other coordinates. The adiabatic hyperspherical
by the present authof§] and by Bransdeet al. [7], how-  potentials thus obtained are a good initial approximation for
ever, no broad resonances occurred at the energies where #@cidating the dominant dynamics of the systgh
L2-type calculations suggeste@imatrix poles far from the The adiabatic hyperspherical channels are then coupled
real energy axis; Ref[6] used the hyperspherical close- by the nonadiabatic operator. In the present HSCC calcula-
coupling (HSCO method and Ref.[7] a least-squares tion, all channels up to those dissociating asymptotically into
method for the conventional close-coupling equations withHe?*+Pgn=3) are coupled. They include all channels disin-
tegrating intoe* +He*(n<8). Thus, substantial improvement
has been achieved over the previous calculaf®hl]. The
*Electronic address: igarashi@phys.miyazaki-u.ac.jp asymptotic form of the scattering wave function is used to
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FIG. 1. S andP-wave positron scattering by Hat energie€
of the total system below the energy level of(f?sl). (a) Eigen-
phase sun®(E). Full curves: present results. Dotted cur@wave
result by Bransdet al. [7]. (b) Eigenvalues of th&swave time-
delay matrixQ(E) (full curves and TrQ(E)=2#/(d5/dE) (broken
curve. (c¢) Eigenvalues of theP-wave Q(E) (full curves and
Tr Q(E) (broken curve

FIG. 2. S andP-wave positron scattering by Het energies
of the total system above the energy level ofr2sl). (a) Eigen-
phase sumS(E). (b) Eigenvalues of th&swave time-delay matrix
Q(E) (full curves and TrQ(E)=2x(ds/dE) (broken curve (c) Ei-
genvalues of theP-wave Q(E) (full curves and TrQ(E) (broken
curve.

=1) and in Fig. 2a) between those of Hén=3) and
He*(n=4), where Ho[3] located complex eigenvalues with
large I'. The eigenvalues and the traces of the time-delay
matrices are presented in Figgb), 1(c), 2(b), and Zc). The
present result for th&wave eigenphase sum in Fig(al
Ahump in a cross section as a function of the total energy.ompares well with the result by Bransden al. [7]. For
E is not necessarily associated with a resonance. In the prepoth S and P waves, the eigenphase sum increases On|y by
ence of an isolated narrow resonance, the sum of all eigeness than 1 radian in this energy region, much less than a
phasesd,, or the eigenphase sud(E), follows the Breit-  value of = radians for a full resonance. In other words,
Wigner one-level formula in a good approximatii®], and  clearly, no full broad resonances occur below the energy
increases nearly byr radians in an energy region having a |evel of Pgn=1).
width of the order ofl". A striking aspect of Figs.(b) and Xc) is the clear peak in
Resonances may also be analyzed by observing the timgy Q(E) found for bothS and P waves. Although Eq(2)
delay or lifetime matrixQ(E) =i#S(dS'/dE) [9]. The trace of  applies accurately to narrow resonances only, in principle, an
Q(E), which has a significance of average time delay due tattempt was made to fit the HSCC values ofQiE) to this
the collision, is proved in the Appendix to satisfy a relation equation in a limited energy rangeE around the peak cen-
Tr Q(E) = Zh@ (1) ter. With a choiceAE=0.1 a.u., the fit was fairly accurate
dE and it yielded parameteréE,,I')=(-0.371,0.13B in a.u.
(with C=-10.6 for the S wave and(-0.352,0.188 (with
C=-9.2 for the P wave. These parameters, which depend
slightly on the choice ofAE, are seen to be consistent with
Ho's results (-0.3705,0.1294 for the S wave and

obtain theS matrix, the eigenphases,, and state-to-state
partial-wave cross sectiong (i — f).

B. Resonances and the time-delay matrix

whatever energy dependen@€E) or 8(E) may have. If5(E)
follows approximately the Breit-Wigner formula with a
background phase changing linearly wihas (C/2)E+C’,
then TrQ(E) behaves as

i (-0.3544,0.178for the P wave [3], though, naturally, the
Tr Q(E) = (E<E)2+(I1272 +4C, (2)  agreement is not perfect and the fitting becomes inaccurate
r outside ofAE (<I"). We note also that only one eigenvalue
according to Eq(A12). of the time-delay matrix has a clear peak and that the other
eigenvalues are slowly varying with, just like the case of
Ill. RESULTS true resonancef®,13].

These observations may be interpreted as follows. The
CRM eigenvalues indeed represe®matrix poles in the

The S and P-wave eigenphase sums are shown in Fig.complex energy plane. TH&matrix poles lying far from the
1(a) at energies between the levels of fte=2) and P$n real energy axis weakly affect scattering for real energies

A. Quest for possible broad resonances
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but the background eigenphases decrease so much in the rel-TABLE |I. Swave resonances in the systegiHe®. HSCC:
evant, broad energy regiasee the large negative values of present 42-channel hyperspherical close-coupling calculation.
C) that no full resonances are seen in the eigenphase sum§RM: complex-rotation methodE,: resonance energyl’: total
An even more striking case is the eigenphase si(Es ~ Width. x[y]=xx10.

in Fig. 2(@). They are seen to decrease nearly monotonically
with energy in this region, implying a negative time delay on ~ Energy level HSCC CRM

the average, or implying that the average collision time is (a.u) E (au) I'(au) E(au) I (au)
shorter than the case of no collision interaction, unlike anyps(s) 0,027 78
resonance process. Nevertheless, the values @(Ej in ) '

Figs. 2b) and Zc) show clear peaks just as in Figgbland He'(8) -0.03125

1(c). Their fit to Eq.(2) in a limited energy range\E -0.03264 1.p-3]
=0.03 a.u. around their peak center vyield&E,,T) -0.03512 1.p-3]
=(-0.188,0.045 for the S wave withC as large as -87.2, -0.03742 3.1-4]
and (-0.188,0.051 for the P wave with C=-75.9 for AE He*(7) -0.040 82

=0.035a.u.,, in fair accord with Ho's results -0.04755 8.p-4]

(-0.1856,0.0398for the S wave and(-0.1848,0.043Rfor  pHet(6) -0.055 56
the P wave [3]. For bothS and P waves, the background PK2) ~0.0625
eigenphase sum, decreasing drastically between the thresh-

olds of HE(n=3) and H&(n=4), seems to wash out any

appreciable effects of th®matrix pole ond(E) in Fig. 2(a).

By monitoring TrQ(E), however, the existence of the

-0.06431 4.1-4] -0.06433 3.9-4
-0.067 42 7.3-4] -0.06743 7.9-4P
-0.07539 5.p-4] -0.07548 5.4-4]*

S-matrix poles far from the real energy axis may be inferredHe’(5)  —0.0800

according to argument similar to the one about Fig. 1. In the -0.1039  5.0-3]

energy region of Fig. 2, too, only one eigenvalue of the timeHe"(4) -0.1250

delay matrix has a peak-like structure with a large negative -0.1856 0.0393
background, and the other eigenvalues vary slowly with enger(3)  -0.2222

ergy, again showing a behavior similar to true resonances. P1) ~0.2500

B. Narrow resonances ~0.250014  7.4-6]
' -0.370%  0.1294

Many narrow resonances are calculated accurately in thiger2)  —0.5000
work. Their positions and total widths, obtained by fitting to
Eq. (2), are summarized in Tables | and II, together with theZREfere”CE[Af]-
stable CRM eigenvalues found in Ref8] and [4]. Some  Reference3].

HSCC resonances were reported previoUi§|§]. In particu-

lar, the one withE,=-0.075 39 and reported in Rg6] as  (attracting each other by the polarization potental in an
extremely narrowI’ ~ 10712 a.u) was corrected in Ref8] excited statgeither attracting or repelling each other by a
asI'=5.3x 10* a.u. This broadeF was confirmed later in dipole potential. Avoided crossings between potentials with
Ref.[4]. This resonance is supported by the well of the adiadifferent asymptotic energies occur quite frequently, and re-
batic hyperspherical potential formed, essentially, by thesult in rich physics, such as the resonance mentioned above
avoided crossings between an asymptotically attractive pcas previously thought to be quite narrow. The attractive di-
tential dissociating into FB=2)+He** and asymptotically pole potential supports an infinite number of Feshbach reso-
repulsive potentials leading to channels'He=4,5)+e*; see  nances if the dipole is strong enough, and their resonance
Fig. 2 in Ref.[6]. The decay mechanism of this resonance isParameters satisfy simple formulas in a good approximation
mainly the coupling with a channel leading asymptotically to[14,19. We find such Feshbach series below thénBg)
He*(n=4)+e*, and partly the coupling with a channel lead- and P$én=3) thresholds in Tables | and II. The infinite series
ing to He'(n=3)+e", instead of the inefficient tunneling actually become finite because of the sublevel splitting due
through the barrier in the adiabatic potential. to the relativistic and quantum electrodynamic effects.

Including this caseE, andI' values for all the narrow
resonances lying below the [Ps2) threshold calculated by
both the HSCC method and CRM agree well with each other. We have discussed examples of stable complex-rotation
The Feshbach resonances lying below th@®8) threshold  eigenvalues, lying far from the real energy axis, that produce
are reported for the first time in this paper, as far as we arao full resonances but that can be assessed by monitoring the
aware. time-delay matrix. Attention should also be drawn to the fact

Resonances in the systeste"He?* are particularly of in-  that the Breit-Wigner one-level formula with constant reso-
terest because there are distinct kinds of asymptotic chamance parameters can often be an unsatisfactory approxima-
nels, namely, the ones dissociating into two charged particleon for broad resonances, in which case the energy depen-
repelling each other, and the ones dissociating into a chargetence of the resonance parameters should be taken into
particle and a hydrogenlike atom, either in the ground stataccount[16,17.

IV. CONCLUSION
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TABLE Il. P-wave resonances in the systefHe™. HSCC: ing a lifetime matrix, or time-delay matrixQ(E), which is
present 73-channel hyperspherical close-coupling calculationassociated with the open channels only, just astheatrix

CRM: complex-rotation methodE,: resonance energyl: total  js. He showed tha®(E) satisfies a relation
width. X[y]=xXx 10".

4 d_T— hd_S t— Ot 2
Energy level HSCC CRM Q(E) =i SdE = dES =Q'(B). (A2)
a.u E, (a.u I'" (au E, (a.u I' (a.u
() r (@ (au (@) aw The matrixQ(E) is seen to be Hermitian. The eigenvalues
Pg3) -0.02778 and eigenvectors of the time-delay matrix were discussed
Hef(8) -0.03125 previously (see, for example, Ref$9,13)), in particular, in
-0.03420 1.5-4] relation to the Breit-Wigner resonance formgi20]. In this
~0.03501 1.5-4] Appendix, they are discussed in term of the eigenvalues and

eigenvectors of thes matrix without assuming the Breit-
Wigner approximation.
The Smatrix is first diagonalized by a unitary matiixas

-0.03730 2.p-4]
He'(7) —0.040 82

-0.0474 9.7-3] "
He'(6) -0.05556 USU'=A. (A3)
Pg2)  -0.0625 Each element\ ,, of the diagonal matrix\ is expressible as
-0.063 13 1.3-4] exp(2i8,) in terms of an eigenphas&,, the corresponding

-0.06395 4.1-4] -0.06397 3.4-4]* eigenvector representing an eigenchannel. We consider the
-0.06430 4.p-4] -0.06429 4.1-4]7 diagonal eigenphase matrik defined by the diagonal ele-
-0.06715 6.5-4] -0.0671% 6.7-4]2 mentsd,,,=,. It immediately follows that

-0.07484 4.-4] -0.07488 4.9-4° dq) dAT
-0.1038  6[-3] _ _ _

Clearly, the right-hand side of EqA4) is not equal to
UQUT in general sinc&) depends on the enerdin general
[9]. If it were equal toUQUT, then the present proof would
be unnecessary. We note that

He'(4) -0.1250

-0.1848 0.0437
He'(3) -0.2222
Pg1)  -0.2500

T J T
-0.354% 0.178 A _ Ud_suT + d—USTUT + Us*di, (A5)
He'(2)  -0.5000 dE dE- dE dE
ZReference[4]. so that 4 ds du du
Referencq3]. 2h— = m(us ur+usu—=sfutT+u— )
dE dE dE dE
ACKNOWLEDGMENTS (A6)

This work was supported in part by the Ministry of Edu- \ypere the unitarity of) andS has been used. Since the trace
catlon,_Smence, Sports, a_nd Techn_ology, Japar_n, and _the CQf a matrix is unchanged by a unitary transformation, the
laborative program of National Institute for Fusion Scienceace of Eq.(A6) may be written as

Japan(A.l.).

do ds' (du - du'
APPENDIX: RELATION BETWEEN THE TIME-DELAY Tr Zﬁﬁ =ihTr Sd— +iATrl U E + UE
MATRIX AND THE EIGENPHASE SUM

Here, we prove Eq.l) in the main text, which relates the (A7)

trace of the time-delay matriQ(E) to the eigenphase sum The first term on the right-hand side is © The second
S(E). We assumeno particular functional formof &(E) in term can be reduced to the form

this proof. A special case of aBmatrix pole at a complex du qut duuth
energyE=E,-il'/2 is also discussed. ihTr(UUT ut+u— ) inTr =0. (A8)
A wave-packet analysis reveals that the delay time asso- dE dE
ciated with a quantum-mechanical single-channel CO"'S'OnTherefore it follows that
may be described in terms of the derivative of the scattering
phase shifty(E) with respect to the collision enerdy as db _ dé
(18,19 Tr Q(E) = 2ﬁTrOIE Zth (A9)
dgp . dS . dS_,
At=2h C=1AS - =—IA_2S. (A1) wheresis the eigenphase sul,s,. This is Eq.(1) in the
main text.
Here, S=exp2i 5) is the single-channeb matrix. Smith[9] Equation(A9) is seen to be a generalization of the single-

generalized EqAL) for multichannel scattering by introduc- channel formulgAl) for multichannel problems. So far, no
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assumption has been made as to the functional for&(Bf AN dsd
or 5,(E). The formulation has been quite general. It would TrQ(E) = (E—E)2+ (127 + ZﬁE- (A12)
be interesting, however, to examine the case of an isolated '
resonance. By substituting the Breit-Wigner formulg20]
Macek[21] derived a simple relation irL2ri2
S; = expli(¢; + ¢j)}<5|j - —IJ—)
E-E=3 ([u/2cof&,(B) - 6,B)],  (AL0) E-E +i2 12
o' (A13)

for each eigenchannel, valid in the presence of @matrix ~ for the Smatrix elements directly into EqA2) and by as-
pole atE=E,-iI'/2 close to the real energy axis, the back-suming{¢;} and{I'j} to be constants independent of the en-
ground eigenphaseéi,(E) varying slowly with energyE.  ergy, it is straightforward to derive EqA12) without the
The sum of the partial widthE, is the total widthl". Equa- ~ Sécond term on the right-hand side; see, for example, Ref.
tion (A10) determines the functional form of each eigen-[13l- In this approximation, it also follows that only one
phases,(E). Later, Hazi[12] showed that the eigenphase €igenvalue ofQ(E) is different from zero, and that the trace

sum satisfies an even simpler Breit-Wigner-type formula IS €qual to this eigenvalufl3]. Indeed, Burkeet al. [22]
found numerically that only one eigenvalue QfE) grows

large in the energy region of a resonance.

It should be added finally that, for broad resonances, the
Breit-Wigner form with constant parametek, {I';}, and
{#} may no longer be a good approximation. Then, &9)
should be used directly, instead of E&12).

E-E, = (I'/2)cof &) - 8(E)], (A11)

with a slowly varying background eigenphase SWiE).
Then, according to EqA9) applied to Eq(Al1l), the trace
of the time-delay matrix is expressible as
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