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Hyperspherical close-coupling calculations forS- and P-wave positron scattering by He+ ions produce no
full resonances in the eigenphase sumdsEd in the two regions of energyE where stable eigenvaluesEr

− iG /2 with largeG were found previously by the complex-rotation method(CRM); dsEd increases only by one
radian in the lower-E region, and even decreases almost monotonically in the higher-E region, implying time
advance, rather than time delay, due to the collision. However, the peaks found in the trace of time-delay
matrix, Tr QsEd, are consistent with the CRM eigenvalues. This suggests that these eigenvalues indeed repre-
sent S-matrix poles in the complex-E plane, but that their effects on scattering are almost masked by the
backgroundd due to the largeG. This work uses a general relation TrQsEd=2"sdd /dEd, proved here forany
functional formof dsEd, and hence, both on and off resonance. This is a generalization of the well-known
single-channel time-delay formula and of the multichannel formula proved previously for the Breit-Wigner
resonance with a constant backgroundS matrix.
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I. INTRODUCTION

The complex-coordinate rotation method(CRM) has
proved to be powerful as a means to calculate simultaneously
the positions and total widths of resonances in atomic phys-
ics [1,2]. With this method, the relative distancer ij between
each pair of particlesi and j in the system is replaced by a
complex variabler ijexpsiud. Then, the HamiltonianH is
transformed into a non-Hermitian operatorHsud. The com-
plex eigenvalues of a matrix ofHsud, constructed in terms of
square-integrable(or L2) basis functionshusj with variable
parameters, are found to be stable against the change in the
rotation angleu, in the size of the basis set, and in the non-
linear parameters inhusj, if these eigenvalues correspond to
S-matrix polesEr − iG /2 for Hsu=0d in the complex-energy
plane. Each of them normally produces a resonance at the
real energyEr with a total width G, unlessG is too large
[1,2].

Ho [3] and Ho and Yan[4] used the CRM for the
positron-involving three-body systeme+e−He2+, and found
stable eigenvalues ofHsud (for all partial wavesLø6) far
from the real energy axis as well as close to it. In fact, the
S-wave eigenvalues with largeG had been suggested by the
stabilization-method calculation of real eigenvalues of the
matrix of Hsu=0d, using L2 basis functions[5]. In detailed
S-wavescatteringcalculations with eigenphase-sum analysis
by the present authors[6] and by Bransdenet al. [7], how-
ever, no broad resonances occurred at the energies where the
L2-type calculations suggestedS-matrix poles far from the
real energy axis; Ref.[6] used the hyperspherical close-
coupling (HSCC) method and Ref.[7] a least-squares
method for the conventional close-coupling equations with

pseudostates centered on the He+ ion. No serious discrepancy
exists between the CRM[3,4] and HSCC results[6,8] for the
positions and total widths of the narrower resonances.

The present work sheds new light on the seemingly incon-
sistent results on the possible broad resonances found in the
literature; they are shown to be consistent, in fact. We im-
prove over and extend the previous HSCC calculations by
coupling a larger number of hyperspherical channels, by cov-
ering the energy range up to the Pssn=3d threshold, and by
going over to theP wave. We analyze the calculated results
in terms of the time-delay matrix introduced by Smith[9].

II. THEORY

A. Hyperspherical close-coupling method

The HSCC method for three-body systems was described
previously[6,10]. Here, only a brief reminder is given. The
hyperradiusr is defined byr2=r1

2+r2
2 in terms of the electron

sr 1d and positronsr 2d coordinates relative to thea particle.
We chooser to be the reaction coordinate throughout the
collision since the asymptotic channels of interest here,e+

+He+ and Ps+He2+ (Ps denoting the positroniume+e−), are
both represented by large values ofr.

First, adiabatic separation is made between the motion in
r and that in other coordinates. The adiabatic hyperspherical
potentials thus obtained are a good initial approximation for
elucidating the dominant dynamics of the system[6].

The adiabatic hyperspherical channels are then coupled
by the nonadiabatic operator. In the present HSCC calcula-
tion, all channels up to those dissociating asymptotically into
He2++Pssn=3d are coupled. They include all channels disin-
tegrating intoe++He+snø8d. Thus, substantial improvement
has been achieved over the previous calculation[6,11]. The
asymptotic form of the scattering wave function is used to*Electronic address: igarashi@phys.miyazaki-u.ac.jp
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obtain theS matrix, the eigenphasesda, and state-to-state
partial-wave cross sectionssLsi → fd.

B. Resonances and the time-delay matrix

A hump in a cross section as a function of the total energy
E is not necessarily associated with a resonance. In the pres-
ence of an isolated narrow resonance, the sum of all eigen-
phasesda, or the eigenphase sumdsEd, follows the Breit-
Wigner one-level formula in a good approximation[12], and
increases nearly byp radians in an energy region having a
width of the order ofG.

Resonances may also be analyzed by observing the time-
delay or lifetime matrixQsEd= i"SsdS†/dEd [9]. The trace of
QsEd, which has a significance of average time delay due to
the collision, is proved in the Appendix to satisfy a relation

Tr QsEd = 2"
dd

dE
, s1d

whatever energy dependenceQsEd or dsEd may have. IfdsEd
follows approximately the Breit-Wigner formula with a
background phase changing linearly withE as sC/2dE+C8,
then TrQsEd behaves as

Tr QsEd .
"G

sE − Erd2 + sG/2d2 + "C, s2d

according to Eq.(A12).

III. RESULTS

A. Quest for possible broad resonances

The S- and P-wave eigenphase sums are shown in Fig.
1(a) at energies between the levels of He+sn=2d and Pssn

=1d and in Fig. 2(a) between those of He+sn=3d and
He+sn=4d, where Ho[3] located complex eigenvalues with
large G. The eigenvalues and the traces of the time-delay
matrices are presented in Figs. 1(b), 1(c), 2(b), and 2(c). The
present result for theS-wave eigenphase sum in Fig. 1(a)
compares well with the result by Bransdenet al. [7]. For
both S and P waves, the eigenphase sum increases only by
less than 1 radian in this energy region, much less than a
value of p radians for a full resonance. In other words,
clearly, no full broad resonances occur below the energy
level of Pssn=1d.

A striking aspect of Figs. 1(b) and 1(c) is the clear peak in
Tr QsEd found for bothS and P waves. Although Eq.(2)
applies accurately to narrow resonances only, in principle, an
attempt was made to fit the HSCC values of TrQsEd to this
equation in a limited energy rangeDE around the peak cen-
ter. With a choiceDE=0.1 a.u., the fit was fairly accurate
and it yielded parameterssEr ,Gd=s−0.371,0.136d in a.u.
(with C=−10.6) for the S wave ands−0.352,0.188d (with
C=−9.2) for the P wave. These parameters, which depend
slightly on the choice ofDE, are seen to be consistent with
Ho’s results s−0.3705,0.1294d for the S wave and
s−0.3544,0.178d for the P wave [3], though, naturally, the
agreement is not perfect and the fitting becomes inaccurate
outside ofDE s,Gd. We note also that only one eigenvalue
of the time-delay matrix has a clear peak and that the other
eigenvalues are slowly varying withE, just like the case of
true resonances[9,13].

These observations may be interpreted as follows. The
CRM eigenvalues indeed representS-matrix poles in the
complex energy plane. TheS-matrix poles lying far from the
real energy axis weakly affect scattering for real energiesE,

FIG. 1. S- andP-wave positron scattering by He+ at energiesE
of the total system below the energy level of Pssn=1d. (a) Eigen-
phase sumdsEd. Full curves: present results. Dotted curve:S-wave
result by Bransdenet al. [7]. (b) Eigenvalues of theS-wave time-
delay matrixQsEd (full curves) and TrQsEd=2"sdd /dEd (broken
curve). (c) Eigenvalues of theP-wave QsEd (full curves) and
Tr QsEd (broken curve).

FIG. 2. S- andP-wave positron scattering by He+ at energiesE
of the total system above the energy level of Pssn=1d. (a) Eigen-
phase sumdsEd. (b) Eigenvalues of theS-wave time-delay matrix
QsEd (full curves) and TrQsEd=2"sdd /dEd (broken curve). (c) Ei-
genvalues of theP-wave QsEd (full curves) and TrQsEd (broken
curve).
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but the background eigenphases decrease so much in the rel-
evant, broad energy region(see the large negative values of
C) that no full resonances are seen in the eigenphase sums.

An even more striking case is the eigenphase sumsdsEd
in Fig. 2(a). They are seen to decrease nearly monotonically
with energy in this region, implying a negative time delay on
the average, or implying that the average collision time is
shorter than the case of no collision interaction, unlike any
resonance process. Nevertheless, the values of TrQsEd in
Figs. 2(b) and 2(c) show clear peaks just as in Figs. 1(b) and
1(c). Their fit to Eq. (2) in a limited energy rangeDE
=0.03 a.u. around their peak center yieldssEr ,Gd
=s−0.188,0.045d for the S wave with C as large as −87.2,
and s−0.188,0.051d for the P wave with C=−75.9 for DE
=0.035 a.u., in fair accord with Ho’s results
s−0.1856,0.0393d for the S wave ands−0.1848,0.0432d for
the P wave [3]. For bothS and P waves, the background
eigenphase sum, decreasing drastically between the thresh-
olds of He+sn=3d and He+sn=4d, seems to wash out any
appreciable effects of theS-matrix pole ondsEd in Fig. 2(a).
By monitoring TrQsEd, however, the existence of the
S-matrix poles far from the real energy axis may be inferred
according to argument similar to the one about Fig. 1. In the
energy region of Fig. 2, too, only one eigenvalue of the time-
delay matrix has a peak-like structure with a large negative
background, and the other eigenvalues vary slowly with en-
ergy, again showing a behavior similar to true resonances.

B. Narrow resonances

Many narrow resonances are calculated accurately in this
work. Their positions and total widths, obtained by fitting to
Eq. (2), are summarized in Tables I and II, together with the
stable CRM eigenvalues found in Refs.[3] and [4]. Some
HSCC resonances were reported previously[6,8]. In particu-
lar, the one withEr =−0.075 39 and reported in Ref.[6] as
extremely narrowsG,10−13 a.u.d was corrected in Ref.[8]
as G=5.3310−4 a.u. This broaderG was confirmed later in
Ref. [4]. This resonance is supported by the well of the adia-
batic hyperspherical potential formed, essentially, by the
avoided crossings between an asymptotically attractive po-
tential dissociating into Pssn=2d+He2+ and asymptotically
repulsive potentials leading to channels He+sn=4,5d+e+; see
Fig. 2 in Ref.[6]. The decay mechanism of this resonance is
mainly the coupling with a channel leading asymptotically to
He+sn=4d+e+, and partly the coupling with a channel lead-
ing to He+sn=3d+e+, instead of the inefficient tunneling
through the barrier in the adiabatic potential.

Including this case,Er and G values for all the narrow
resonances lying below the Pssn=2d threshold calculated by
both the HSCC method and CRM agree well with each other.
The Feshbach resonances lying below the Pssn=3d threshold
are reported for the first time in this paper, as far as we are
aware.

Resonances in the systeme+e−He2+ are particularly of in-
terest because there are distinct kinds of asymptotic chan-
nels, namely, the ones dissociating into two charged particles
repelling each other, and the ones dissociating into a charged
particle and a hydrogenlike atom, either in the ground state

(attracting each other by the polarization potential) or in an
excited state(either attracting or repelling each other by a
dipole potential). Avoided crossings between potentials with
different asymptotic energies occur quite frequently, and re-
sult in rich physics, such as the resonance mentioned above
as previously thought to be quite narrow. The attractive di-
pole potential supports an infinite number of Feshbach reso-
nances if the dipole is strong enough, and their resonance
parameters satisfy simple formulas in a good approximation
[14,15]. We find such Feshbach series below the Pssn=2d
and Pssn=3d thresholds in Tables I and II. The infinite series
actually become finite because of the sublevel splitting due
to the relativistic and quantum electrodynamic effects.

IV. CONCLUSION

We have discussed examples of stable complex-rotation
eigenvalues, lying far from the real energy axis, that produce
no full resonances but that can be assessed by monitoring the
time-delay matrix. Attention should also be drawn to the fact
that the Breit-Wigner one-level formula with constant reso-
nance parameters can often be an unsatisfactory approxima-
tion for broad resonances, in which case the energy depen-
dence of the resonance parameters should be taken into
account[16,17].

TABLE I. S-wave resonances in the systeme+He+. HSCC:
present 42-channel hyperspherical close-coupling calculation.
CRM: complex-rotation method.Er: resonance energy.G: total
width. xfyg=x310y.

Energy level HSCC CRM

sa.u.d Er sa.u.d G sa.u.d Er sa.u.d G sa.u.d

Pss3d −0.027 78

He+s8d −0.031 25

−0.032 64 1.2f−3g
−0.035 12 1.5f−3g
−0.037 42 3.1f−4g

He+s7d −0.040 82

−0.047 55 8.9f−4g
He+s6d −0.055 56

Pss2d −0.0625

−0.064 31 4.1f−4g −0.064 33a 3.9f−4ga

−0.067 42 7.3f−4g −0.067 43a 7.9f−4ga

−0.075 39 5.3f−4g −0.075 40a 5.4f−4ga

He+s5d −0.0800

−0.1039 5.0f−3g
He+s4d −0.1250

−0.1856b 0.0393b

He+s3d −0.2222

Pss1d −0.2500

−0.250 014 7.4f−6g
−0.3705b 0.1294b

He+s2d −0.5000

aReference[4].
bReference[3].
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APPENDIX: RELATION BETWEEN THE TIME-DELAY
MATRIX AND THE EIGENPHASE SUM

Here, we prove Eq.(1) in the main text, which relates the
trace of the time-delay matrixQsEd to the eigenphase sum
dsEd. We assumeno particular functional formof dsEd in
this proof. A special case of anS-matrix pole at a complex
energyE=Er − iG /2 is also discussed.

A wave-packet analysis reveals that the delay time asso-
ciated with a quantum-mechanical single-channel collision
may be described in terms of the derivative of the scattering
phase shifthsEd with respect to the collision energyE as
[18,19]

Dt = 2"
dh

dE
= i"S

dS*

dE
= − i"

dS

dE
S* . sA1d

Here,S=exps2ihd is the single-channelS matrix. Smith[9]
generalized Eq.(A1) for multichannel scattering by introduc-

ing a lifetime matrix, or time-delay matrix,QsEd, which is
associated with the open channels only, just as theS matrix
is. He showed thatQsEd satisfies a relation

QsEd = i"S
dS†

dE
= − i"

dS

dE
S† = Q†sEd. sA2d

The matrixQsEd is seen to be Hermitian. The eigenvalues
and eigenvectors of the time-delay matrix were discussed
previously(see, for example, Refs.[9,13]), in particular, in
relation to the Breit-Wigner resonance formula[20]. In this
Appendix, they are discussed in term of the eigenvalues and
eigenvectors of theS matrix without assuming the Breit-
Wigner approximation.

TheSmatrix is first diagonalized by a unitary matrixU as

USU† = L. sA3d

Each elementLaa of the diagonal matrixL is expressible as
exps2idad in terms of an eigenphaseda, the corresponding
eigenvector representing an eigenchannel. We consider the
diagonal eigenphase matrixF defined by the diagonal ele-
mentsFaa=da. It immediately follows that

2"
dF

dE
= i"L

dL†

dE
. sA4d

Clearly, the right-hand side of Eq.(A4) is not equal to
UQU† in general sinceU depends on the energyE in general
[9]. If it were equal toUQU†, then the present proof would
be unnecessary. We note that

dL†

dE
= U

dS†

dE
U† +

dU

dE
S†U† + US†dU†

dE
, sA5d

so that

2"
dF

dE
= i"SUS

dS†

dE
U† + USU†dU

dE
S†U† + U

dU†

dE
D ,

sA6d

where the unitarity ofU andShas been used. Since the trace
of a matrix is unchanged by a unitary transformation, the
trace of Eq.(A6) may be written as

TrS2"
dF

dE
D = i"TrSS

dS†

dE
D + i"TrSU†dU

dE
+ U

dU†

dE
D .

sA7d

The first term on the right-hand side is TrQ. The second
term can be reduced to the form

i"TrSUU†dU

dE
U† + U

dU†

dE
D = i"Tr

dsUU†d
dE

= 0. sA8d

Therefore, it follows that

Tr QsEd = 2"Tr
dF

dE
= 2"

dd

dE
, sA9d

whered is the eigenphase sumoada. This is Eq.(1) in the
main text.

Equation(A9) is seen to be a generalization of the single-
channel formula(A1) for multichannel problems. So far, no

TABLE II. P-wave resonances in the systeme+He+. HSCC:
present 73-channel hyperspherical close-coupling calculation.
CRM: complex-rotation method.Er: resonance energy.G: total
width. xfyg=x310y.

Energy level HSCC CRM

sa.u.d Er sa.u.d G sa.u.d Er sa.u.d G sa.u.d

Pss3d −0.027 78

He+s8d −0.031 25

−0.034 20 1.4f−4g
−0.035 01 1.5f−4g
−0.037 30 2.8f−4g

He+s7d −0.040 82

−0.0474 9.7f−3g
He+s6d −0.05556

Pss2d −0.0625

−0.063 13 1.3f−4g
−0.063 95 4.1f−4g −0.063 97a 3.8f−4ga

−0.064 30 4.0f−4g −0.064 29a 4.1f−4ga

−0.067 15 6.3f−4g −0.067 11a 6.7f−4ga

−0.074 84 4.4f−4g −0.074 86a 4.5f−4ga

He+s5d −0.0800

−0.1038 6.f−3g
He+s4d −0.1250

−0.1848b 0.0432b

He+s3d −0.2222

Pss1d −0.2500

−0.3544b 0.178b

He+s2d −0.5000

aReference[4].
bReference[3].
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assumption has been made as to the functional form ofSsEd
or dasEd. The formulation has been quite general. It would
be interesting, however, to examine the case of an isolated
resonance.

Macek [21] derived a simple relation

E − Er = o
a8

sGa8/2dcotfda8
0 sEd − dasEdg, sA10d

for each eigenchannela, valid in the presence of anS-matrix
pole atE=Er − iG /2 close to the real energy axis, the back-
ground eigenphasesda8

0 sEd varying slowly with energyE.
The sum of the partial widthsGa8 is the total widthG. Equa-
tion (A10) determines the functional form of each eigen-
phasedasEd. Later, Hazi [12] showed that the eigenphase
sum satisfies an even simpler Breit-Wigner-type formula

E − Er = sG/2dcotfd0sEd − dsEdg, sA11d

with a slowly varying background eigenphase sumd0sEd.
Then, according to Eq.(A9) applied to Eq.(A11), the trace
of the time-delay matrix is expressible as

Tr QsEd =
"G

sE − Erd2 + sG/2d2 + 2"
dd0

dE
. sA12d

By substituting the Breit-Wigner formula[20]

Sij . exphisfi + f jdjSdi j −
iGi

1/2G j
1/2

E − Er + i o Gk/2
D ,

sA13d

for the S-matrix elements directly into Eq.(A2) and by as-
suminghfij and hGij to be constants independent of the en-
ergy, it is straightforward to derive Eq.(A12) without the
second term on the right-hand side; see, for example, Ref.
[13]. In this approximation, it also follows that only one
eigenvalue ofQsEd is different from zero, and that the trace
is equal to this eigenvalue[13]. Indeed, Burkeet al. [22]
found numerically that only one eigenvalue ofQsEd grows
large in the energy region of a resonance.

It should be added finally that, for broad resonances, the
Breit-Wigner form with constant parametersEr, hGij, and
hfij may no longer be a good approximation. Then, Eq.(A9)
should be used directly, instead of Eq.(A12).
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