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S-wave resonances in positron scattering by H&
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S-wave e’ +He" scattering is calculated using the hyperspherical close-coupling method. The two reso-
nances found at about0.73 Ry and-0.39 Ry by Bhatia and DrachmgRhys. Rev. A42, 5117(1990] and
reproduced by H§Phys. Rev. A53, 3165(1996] do not occur in the present results. An argument against
these proposed resonances is presented on the basis of the adiabatic hyperspherical potentials. Instead of these
resonances, we have found narrow Feshbach resonances just below the thresiakfsg.u. and-0.0625
a.u) of the formation of Psf=1) and Psf=2) and an extremely narrow shape resonance just above the
threshold—0.08 a.u. of HE (n=5). They would be hardly detected sin(i¢ the resonance widths are of the
order of 10%—10"5 a.u. or less(ii) the resonance is weak in the elastic cross secfiibithe magnitudes of
the inelastic and Ps-formation cross sections are small(impthe smooth cross sections due to higher partial
waves should still be added to tiBewave cross sectioriS1050-294®7)04212-]

PACS numbd(s): 34.80.Kw, 31.15.Ja, 36.10.Dr

I. INTRODUCTION spherical potentials may also lead to a persuasive argument
that no resonances occur in a certain energy region.

Resonance calculations can sometimes be quite subtle. |p THE HYPERSPHERICAL CLOSE-COUPLING METHOD
particular, the question of the occurrence of resonances in

positron scattering by positive ions is of interest because of The formalism of the present HSCC method is outlined
the asymptotic repulsive Coulomb potential in the initial ar-here; further details may be found in a previous pdj3gr
rangement channel and the attractive long-range potentials ietr . andr_ denote the position vectors of the positron and
the positronium(P9 channels, namely, the polarization po- the electron relative to the nucleus He The hyperradius
tential in the ground-state Ps channel and the dipole poterp=1r.?+r_? and the hyperanglep=tan *(r_/r.) re-
tials in excited-state Ps channels. place the pair of the radial coordinates andr_ and Q)
Bhatia and Drachmafi] applied the stabilization method denotes the five angular variableg,f. ,r_) collectively.
to et +He" scattering and found tw&-wave resonances An adiabatic Hamiltoniarh,4 is defined by writing the total
lying at energies-0.73 Ry and—0.39 Ry of the total scat- HamiltonianH as

tering systeme™ He". The calculations by H$2] using the )
method of complex-coordinate rotation reproduced these H= — } 5_+§ 9 +had p:Q) )
resonances; the resonance enerfieand the widthd" are 2\ gp% pdp admmrr

(E, ,T)=(-0.371, 0.125) and+0.186, 0.039) in a.u. Ho _ o _ N

noted the possibility of the detection of these resonances, thg other wordshyy is the Hamiltonian obtained by fixing the
widths being 3.4 eV and 1.1 eV. H&] also found broad value of p. Then the adiabatic channel functiopg of the
P-wave resonances in this system. Both the stabilization an@ngular variableg) and the corresponding adiabatic hyper-

the complex-coordinate-rotation methods are of bound-statPherical potentials) ,(p) are defined as the eigenfunctions
type and eigenvalues of the adiabatic Salinger equation

Here we report the results of detailed scattering calcula- 15
tions for theS-wave e™ + He™ collision system using the hao(p;ﬂ)%(p;ﬂ):(uﬂ(p)— _2> e P Q) (2
hyperspherical close-couplingdSCO method and reexam- 8p
ine resonance structures in the cross sections. The power %‘r fixed values ofp. As p—, each of the potentials/,

the HSCC method in the study of continuum processes in- . ) :
volving a positron has been demonstrated in the Iiteraturappro"leheS a hydrogenic energy of either th& ibm or the

. ositronium Ps.
[3,4]. The recent development of the hyperspherical ap-% The wave function¥ of the total scattering system is

proach is reviewed by Lili5]. One of the advantages of the o, andeq in terms of the complete set of adiabatic wave
HSCC method is that nonlocal potentials are completely abg,nctions as

sent in the scattering equations even for the system for which

rearrangement channel®r Ps-formation channels in the N

present cagemust be considered. This allows one to use the \P(P'Q):% P 5/2Fu(P)‘Pu(P;Q)- (©)
visual information on the adiabatic hyperspherical potentials

for associating bound states and resonances with particul&ubstitution of this form into the Schidimger equation for
adiabatic states and for classifying resonances into Feshbade total system leads to coupled radial equations=ig(ip)
and shape resonances. Examination of the adiabatic hypemamely,
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1d
— 5 ——+UL(p)—E|F(p)+ 2 V., F.(p)=0, (4
2 dp >

the coupling potentialsv,,, stemming from the kinetic-
energy operator or from the nonadiabatic effect. These
coupled equations are referred to as the HSCC equations.
In fact, a slight modification in this formalism is made for
computational convenience singg,, can be sharply peaked
in the vicinity of avoided crossings between adiabatic poten-
tials U ,(p). First, the entire region op is divided into a
large number of small sectors. If an avoided crossing be-
tween adiabatic potentiald ,(p) and U ,.(p) occurs, the
corresponding adiabatic channel functiogs,(p;(2) and
¢, (p;Q2) in Eq. (3) in each sectok in the vicinity of the
avoided crossing are replaced by(py;€2) andg,,:(pi ;1)

AKINORI IGARASHI AND ISAO SHIMAMURA

0.0
et + He*(n=4) |

et + He*(n=3) |

3-0.1}
©

\—

] I

e o

w
T

He?* + Ps(n=1)

e* + He*(n=2)

Adiabatic Potential U, (p) (
L s
© p; »

I
o
=)

0 50 100

Hyperradius p (a.u.)

FIG. 1. S'wave hyperspherical adiabatic potential-energy curves

at the midpointp=p, of that sector. These functions are of the systene”He". In the asymptotic limit, each potential-energy
referred to as piecewise diabatic functions since they are irfurve approaches the energy of either kie) or PS(fl)- Their
dependent op in each sector. Those adiabatic channel func2symptotic - arrangements are indicated as +He"(n) or

tions unassociated with the avoided crossing are used as th

*+Ps(n). The adiabatic potential for the systestiH that dis-

are. Thus our expansion is a hybrid of adiabatic and diabatigciates into Fi+Ps(=1) is also shown by the dashed curve for

channel functions.
In solving the HSCC equations, the wave function is
matched smoothly from sector to sector so that the value an

comparison.

gances near the energies where these authors located reso-

derivative are continuous over the boundary between adjd]ances. Indeed, the 24-channel HSCC calculation revealed

cent sectors. The solutions are thus propagated up to a lar
enough valuep,, of p. There, they are matched to the
proper scattering boundary condition in Jacobi coordinate
and the scattering matrix is extracted. For hydrogenic exciteg
states, we use dipole states, which are such linear combin

tions of hydrogenic states with a common principal quantunSymptotically proportional to-p- , 10«
Qshort-range potential well. The HSCC calculation with fine

energy-mesh points just below the threshold-09.25 a.u.
for Ps(h=1) produced a resonance supported by this poten-
tial well. A fit of the eigenphase sum to the Breit-Wigner

numbem that diagonalize the sum of the dipole operator an
the angular-momentum operatid@]. The Coulomb(for the
e’ +He" channels or Bessel(for the HE " + Ps channels
functions of complex order, instead of integral angular mo-

mentum, are employed for the radial asymptotic scatterin%”f’
=

functions. Two choices of the matching radjus,,, hamely,
450 a.u. and 600 a.u., have led to results differing by les

than 0.1% from each other. The channel functignsin Eq. y i X
ppresent calculation. Furthermore, the bottom of the potential

well is —0.27 a.u. and is much higher than0.37 a.u. Thus
the resonance found in the present calculation is quite differ-

(2) are calculated by means of a variational method wit
Slater-type orbitals as discussed in Rgf]; the variational
trial function includes 3%, 25p, 20d, 15f, 159, and 15h
orbitals centered on Hé and 20s, 15 p, and 10d orbitals
as functions of _ —r, . In the close-coupling expansi@8),
we coupled 24 channels describing fragmentation into
e*+He'(n=1-6) and H&" + Ps(=1,2) in the asymptotic
region.

Ill. RESULTS AND DISCUSSION

The calculateds-wave adiabatic hyperspherical potential
curves are shown in Figs. 1 and 2. The potential curves that
lead to the arrangemest” + He* (n) in the asymptotic re-
gion decay as M owing to the repulsive Coulomb force
betweene™ and He . No potential curves are seen in Fig. 1
that have an attractive well strong enough to support a reso-
nance around an energy 6f0.37 a.u. or—0.19 a.u., around
which resonances were found by Bhatia and Drachfdan

Q@ resonance structure in this energy region; note that the
es

onance widths quoted by Ho are so large that we could

got have missed them if these resonances really existed.

The potential curve that converges to ?Hle-Ps(n=1)

as an attractive dipole polarization potential, which behaves

4 and connects to a

level formula vyielded a resonance position of
—0.250 012 a.u. and a width 6¥=7.7x10"® a.u. This

esonance is much narrower than the one that was calculated

Ho [2] at ~—0.37 a.u. and that was not found in the
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FIG. 2. S'wave hyperspherical adiabatic potential curves of the

and Ho[2]. Since any Feshbach-type or shape resonances aggsteme*He" near the Ps{=2) threshold. The adiabatic potential
considered to appear as bound or resonance states support@dthe systeme™H that dissociates into H+Psn=2) is also
by an adiabatic hyperspherical potential, we expect no resashown by the dashed curve for comparison.
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TABLE I. Swave resonances in the systafie He’* below the thresholds Hé+Psn=1) and
He?* + Ps(=2). Each resonance is expressed Bs,[), whereE, is the resonance energy aiidis the
width, both in atomic unitsa[b]=ax 1CP.

Present Bhatia and Drachmft] Ho [2]

below the Psf=1) threshold
(—0.365, 5 (—0.37050, 0.129%
(—0.250012, 7.7—6])
below the Psf=2) threshold
(=0.195, 5 (—0.1856, 0.0398
(—0.075 595, L-13))
(—0.067 42, 6.B—4])
(—0.064 32, 3.p—4))

ent from the one located by Ho at0.37 a.u., and Ho's channel calculation, they changed irfp= —0.067 42 a.u.,
conjecture that the latter might be supported by the polarizaF =6.8x 10" % a.u. andE,= —0.064 32 a.u.]'=3.6x10 4
tion potential is excluded. Note that no resonance was found.u. Similar values found in the 7-channel and 24-channel
for the e +H collisions just below the Pa(=1) threshold calculations imply weak coupling of these resonances with
[4] because of the weaker polarization potential betweén H channels augmented in the latter calculation.
and Psfi=1) than between Hé and Psq=1) by a factor The adiabatic potential curve supporting these two reso-
of 1/4; see the potential-energy curve for the systeifiPld, nances(and many othérhas an avoided crossing with the
shown by the dashed curve in Fig. 1 for comparison, thatowest potential curve shown in Fig. 2. If these two adiabatic
dissociates into H+Ps(=1). potential curves are connected smoothly over the avoided
One of the potential curves near the Ps(2) threshold, crossing, one of the two resultant diabatic curves looks much
shown in Fig. 2, has an asymptotic attractive dipole potentialike the potential curve for HIPs, shown by the dashed
due to the degenerate Bs{2) states. This adiabatic poten- curve in Fig. 2 for comparison, that dissociates into
tial supports an infinite series of bound states just below th&i™ +Ps(n=2). Because of this attractive potential, the sys-
Ps(=2) threshold, the two lowest of which lie at0.0669 tem H*Ps has resonance&(,I')=(—0.0751, 1.K 10" %)
a.u. and—0.0642 a.u. These bound states turn into Feshbacand (—0.0658, 8.%x 10™°) in a.u.[4,7]. Similarly, an attrac-
resonances when coupled with open chanh@&]sWe first  tive diabatic potential calculated for the present system
solved HSCC equations retaining only the seven channelde?"Ps by somewhat arbitrary smooth connection of adia-
dissociating into either e +He'(n=5) or He&" batic curves supports bound states, of which the two lowest
+Ps(n=2), for energies between 0.09 a.u. and-0.0625 are found to lie at-0.0771 a.u. and-0.0686 a.u. A HSCC
a.u. with a step of 1810 % a.u. This test calculation re- calculation coupling the two channels washes away the sec-
vealed several resonances, of which the two lowest havend state completely since this level lies in the energy region
resonance parameteis,=—0.066 72 a.u.,.I'=4.8x10 4  of the avoided crossing. On the other hand, the lowest state
a.u. andE, = —0.064 37 a.u.]'=2.2x10 * a.u. With a 24-
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FIG. 4. S-wave cross sections fa" + He" scattering below the
FIG. 3. S-wave cross sections fe™ + He' scattering below the Ps(nh=2) threshold. Circles, elastic; pluses, excitation of
Ps(n=1) threshold. Circles, elastic; pluses, excitation of iHe@). He(n=2); triangles, formation of Pa=1). The positron energy is
The positron energy is indicated on the upper scale and the enerdgdicated on the upper scale and the energy of the total system
of the total systene"He™ on the lower scale. The resonance posi- e"He* on the lower scale. The positions of two resonances are
tion is indicated by an arrow. indicated by arrows.
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changes into a very narrow resonance since this level lies fgormation cross sectiofin Fig. 4) just below the Ps(=2)
below the maximum of the lower adiabatic potential of thethreshold. Experimental verification, however, must be diffi-
two and yet above the threshold of0.08 a.u. for cult because of the small magnitude of the cross sections, the
e +He"(n=5). In fact, this resonance is observed atsmall resonance widths, and the smooth cross sections due to
E,=—0.075 46 a.u. as a shape resonance With9x 10" higher partial waves, which should be added to $awave
a.u., already in a single-channel calculation with the lowestross section.
adiabatic potential in Fig. 2 together with the adiabatic cor-
rection on it. The resonance parameters change slightly into
(E,,T')=(—0.075 598, X109 in the two-channel calcu-
lation and into ¢0.075 595, X 10 %) in a seven-channel We have calculated resonance parameters and cross sec-
calculation. tions for SSwavee™ +He" scattering using the hyperspheri-
The resonance parameters determined in this work areal close-coupling method. The resonancelike phenomenon
summarized in Table | together with the results of Bhatia andtalculated by Bhatia and Drachmgli and confirmed by Ho
Drachman[1] and Ho[2]. The present values are very dif- [2] does not appear in the present calculation. Instead, we
ferent from the results of these previous authors, implyinchave found narrow Feshbach resonances with widths of the
different origins. order of 104-10"% a.u. just below the threshold of
Figure 3 shows the calculat&wave elastic and inelastic Ps(n=1) and just below the threshold of Ps{2). We have
cross sections fore™+He"(n=1) scattering below the also found an extremely narrow shape resonance just above
Ps(h=1) threshold. TheS-wave elastic, inelastic, and Ps- the threshold o'+ He"(n=5). These resonances may be
formation cross sections for energies below thenPs?) difficult to detect experimentally. Generalization of this work
threshold are shown in Fig. 4. In both figures, the elastidor higher partial waves would be of interest in two ways: On
cross section is much larger than the inelastic and rearrangene hand, the contributions from higher partial waves to the
ment cross sections. The effect®wave resonances on the cross sections may be far from negligible in the resonance
elastic cross section is weak. The resonance effect appeamsgion and, on the other hand, possible resonances in higher
clearly in the cross sectiofin Fig. 3) for excitation of partial waves for which the adiabatic potentials look differ-
He? " (n=2) just below the Ps(=1) threshold and in the Ps ent from theS-wave potentials would be worth studying.

IV. CONCLUSION
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