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It is mathematically indicated that the widely used diabatic-by-sector recipe for solving coupled radial
equations in the hyperspherical coordinate method causes non-negligible errors and these are revealed espe-
cially for extremely low-energy scattering. The intrinsic defects due to this method are illustrated for both
bound state and the scattering statesliipf. The calculated results are also compared with those obtained by
the adiabatic expansion methd&1050-2947®@7)08407-2

PACS numbds): 31.15.Ja, 36.10.Dr

The hyperspherical coordinate method is recognized as athe infinite dimension is expressed Bs . Equation(l) is
excellent method to study the Coulomb three-body problendefined within a small sector ofp, pn—Ap/2
in a unified manner. It covers conventional two-electron at<p<p.,+ Ap/2, wherep,, gives the midpoint of the sector
oms, one-electron diatomic molecules, and even exotic atandAp its width.
oms and molecules beyond the validity of the infinite nuclear A set of channel wave functions having a truncated di-
mass approximation. It also enables one to compute preciggension of XN is defined as{®}, each component of
scattering cross sections, resonance positions, and the widtiihich is a solution of the associated adiabatic equation
as well as binding energies for several three-body systems
[1]. In practical calculations with the hyperspherical ap- ~
proach, the diabatic-by-sectéPBS) method is widely ap- U(p,Q)®(p,Q)=D(p,Q)U(p), 2
plied[2]. In spite of the fact that the DBS method is success-
ful in many actual problems we are unaware of rigid criteria . _ _ o _
for its validity. It is usually checked numerically by confirm- With U andU the adiabatic Hamiltonian and tieX N diag-
ing the unitarity condition on the transformation matricesonal adiabatic potential matrix, respectively. The sym@ol
from one sector to the adjacent one when the sector size arfinotes all relevant hyperangles. A complete set of the adia-
number of channels are changed. batic channel wave functions with the dimension of ., is

We have experienced in recent wofl4] that the DBS ~ denoted by{®..}. The matrix {®} spans a subspace of
method is by no means applicable to extremely Iow—energ){‘bm}- Also let the associated adiabatic potential matrix be
collisions due to the slow convergence of calculated cros¥/ -
sections with respect to the number of channels included. The total wave function¥ represented by the>XN di-
Furthermore, this defect is never remedied by simply emmension matrix is written
ploying a smaller sector size. In the present article we ascer-
tain a source of such difficulties by deriving an alternative -
set of coupled radial equations from those originally given W(p,Q)=P(pm,Q)F(p), 3
by the DBS method. The resulting equations correspond to
those obtained by the adiabat®D) expansion method. The : ;
validity of the DBS method is then discussed with referencefonowmgjhe DBS ansatz. Equatidd) results from Eq(3)
to calculations using both the DBS and AD methods for the?d thusU is of the form
binding energies and the scattering cross sections of the

dtu system. Ul(p)= ’
We begin with the coupled radial equations of the DBS U(p)=(®(pm )|V (p. D] @(pm. 1))
method, given by =C'(p)U..(p)C(p), 4
~ 1 ~ ~
F(p)"+ F+2[E_ U(p)1|F(p)=0, (1)  where it is understood that integrations are done évetn
P

the second equality we have used the completeness property
of {®d,} and defined the N,XN matrix C as
where anNXN matrix notation has been adopted for the C(p)=(®..(p,Q)|P(py.Q)).
radial wave functiorF and diabatic coupling matrild. The It is convenient to partitiorC into two block matrices
guantitiesE and p are the total energy and hyperradius, re-consisting of aNXN matrix A and a residualN..—N) XN
spectively. Hereafter the dimensidhis assumed finite and matrix Ag as
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respectively. In the second equality of E{.3), we have
(5) used the identityV'(p) + W(p) =2W¢(p) and the definition
A(p)=Wq(p)+P'(p)P(p) with the symmetric matrix
Ws defined asWg(p)=—(d®(p,Q)/dp|d®(p,Q2)/dp).
whereA is given by If the complete set{®.} is inserted intoWg(p), this
matrix is given by Wg(p)=—(D..(p,Q)|d®P(p,Q)/
Alp)=(P(p, V)| P(py, Q). 6 dp)(D..(p,Q)|dD(p,Q)/dp). Therefore, in the limit that
_ N tends to infinity,A(p) vanishes and Eq13) coincides
Substituting Eq(5) into Eq. (4), U gives with Eq. (12).
_ Employing Eqs(11)—(13) in Eq. (9) and neglecting con-
U(p)=AT(p)U(p)A(p)+AK(p)Ur(p)Ar(p),  (7)  tributions from higher-order terms @ gives

A(p)

Clp)=| Ar(p)

where theN., X N., matrix U,, has been partitioned into two
diagonal matriced) of dimensionN XN and the remaining
one Ui with dimension N,,—N) X (N, —N).

An alternative radial wave function with the dimension of

NXN is defined as +2[E—U(p)]}F(P)=0, (14)
F(p)=A(p)F(p). (8)

F(p)"+2P(pm)F(p)’ +

1
4_p2 +[W(pm) —2A(pm) ]

where the fact thafg in Eq. (9) is of the order ofép has

Inserting Eq.(7) and the inverse expressidh=A"'F into been taken into account. On the other hand. exparras

Eq. (1) yields coupled radial equations fé,

1 -
FrH2AA Y F 4| g+ AATY 4 2(E-AATU W(p )= @, 2)Faolp). (19

N . following the AD expansion method instead of E§), one
—AARURARA™ ) |F=0, (9 finds for the coupled radial equations of the wave function
Fap with the NX N dimension the result
where the argumeni has been omitted.
It is assumed that the sector size is sufficiently small

that ®(p,)) may be expanded in a Taylor series with re- Fan(p)"+2P(p)Fap(p)' + i2+W(p)
spect todp=p—pm (|dp|<Ap), 4p
D(p,Q)=D(pm, Q1) +P(py, Q)" Sp +2[E—U(p)]|Fap(p)=0. (16)
1
+ E<I>(pm,Q)"5p2+ _— (10

Here no approximations have been employed so far aside
from truncating the dimension of the equationdNo
The quasiadiabatic equatidt4) differs from Eq.(16) in
1 that (i) the nonadiabatic coupling terms d¥(p,) and
A(p)=1+P'(p) dp+ EWT(pm)ﬁpz-i- ..., (1))  W(p,) are constant within the sector arii) the correct
couplingW(p) is replaced by (p,) —2A(p,,) - This defect

where derivative matricesP and W have been de- 0 isil remedied in prirr:ciple by rrr:aking t}lhe sgctor sixp

. _ smaller. In practice, however, this problem becomes more
fined as P(p)=(®(p,Q)|dP(p,Q)/d and W . .

—(®(p Q)|d2(£zp g)ﬁg&;' res(gecti)velf/? Note thaA(pi)s acute in the case where the couplirig() andW(p) vary

not unitary sinceN#N., . The matricesA~* and A" are of sharply and rapidly within the sector and these values are
the following forms: = never regarded as constant. Such rapid variations usually oc-

cur in the distant region gf where energy levels of different
1 channels cross, giving rise to Landau-Zener-type couplings.
AT(p)=1+P(py) Sp+ EW(pm)ﬁpz-l- e (12 The defect(ii) indicates that the DBS method does not sat-
isfy the correct asymptotic conditions for scattering wave
functions, a drawback that is most significant in the lower-
incident-energy region.
1 The asymptotic conditions in the hyperspherical coordi-
A" Y(p)=1+P(py) Sp— E{WT(pm)_ZP(Pm)Z}(spz-i— . nate method are determined by the behavior of diagonal el-
ements oW, U and the mock potential 144 at largep [5].
1 An error in the DBS method is of the ordera/p? with a
=1+P(py) Sp+ E{W(pm)—ZA(pm)}ﬁpz-i- cee negative constara given by the asymptotic form @, in-
dependently of the sector size. This defect is remedied only
(13 by increasing the number of channels and lettagpecome

Then the matrixA becomes

and
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TABLE |. Binding energies (eV) for a ground state TABLE II. Cross sections(cm?) for the elastic scattering
(J=0, v=0) and the first excited statd€0, v=1) of thedtu t+du(ls) with J=0 versus the center-of-mass incident energies
molecule in then=1 manifold. These are reckoned from the thresh-E (eV) reckoned from the threshold energy of tde(1s) frag-
old energy of tha . (1s) fragment.J andv mean the total angular ment. Values in square brackets mean the powers of 10.
momentum and the vibrational quantum numbers, respectively
DBS and AD represent the present diabatic-by-sector and adiabatie DBS AD Other work[9]
calculations, respectivel\ is the number of channels included.

1 1.846—-18] 9.229-20] 9.324—20]
States N DBS AD Other works 3 4.379-19] 1.284-19] 1.277-19
5 2.617—19] 1.351—19] 1.357—19]
(0,0) 1 333.22 317.75 317.7[5] 8 1.732_19] 1-346:_19] 1-346_19]
2 333.18  317.80 317.807] 10 1.529—19] 1.303-19] 1.302-19]
6 32220 319.00 30 6.496—20] 6.873—20] 6.995—20]
12 320.77  319.09 50 3.047-20] 3.082—20] 3.216—20]
20 320.18 319.11
Exact 319.13975216[8]
0,1 1 43851  31.982 31.907] dominated by a polarization potentiai 1p* much weaker
2 42.789 33.446 33.467] than the spurious dipole one. Even if the leading contrlbut!on
6 36.835  34.634 of the asymptopc potgntlal is from the Coulqmb potential
12 36059  34.755 71/p, the spurious dipole potential could still cause no-
20 35.723  34.788 ticeable errors. _ . .
Exact 34.83446478] Table Il shows the elastic cross sectiond 6fdu(1s) in

the range of the center-of-mass incident energies from 1 to
50 eV. Note that this energy range should be considered as
negligibly small. As illustrated in the following, however relatlyely .IOW since 1 eV_ equals 1,780 * in the muon

) ' ' atomic unit. Both calculations by the DBS and the AD meth-

the.‘ convergence V.V'th respect to the number of channels 'Bds incorporate 20 channels. The cross sections obtained by
quite slow in practice.

The defect(ii) of the DBS appoach is exemplified by the former method are overestimated in the lower-energy re-

comparing actual calculated results by both the DBS and agon due to the presence qf the spurious Iong-range potential
) - . . These reach the magnitude of cross sections comparable
methods. To this end, we focus on the binding energies ané

. . . with those by the AD method at energies no less than the
the scattering cross sections of e system with the total :
o - : order of 10 eV. The cross sections by the DBS method were
angular momentund=0 in then=1 manifold. Results to-

gether with the corresponding reported data are shown i}‘]ound to be considerably overestimated specifically in the
Tables | and Il. The AD method is that discussed in Refsextremely low-energy region from 0.001 to 0.1 eV, where

[3,4]. Computational conditions are set equal for both meth:[he.dt"’“ molecule play_s decisive roles in the muon-catalyzed
) fusion. As to the elastic process ot w(1s) and the muon
ods. The physical values employed here for masses and ttEreansfer rocess frordu(1s) to tu(1s), similar tendencies
Rydberg constant have been taken frigh P M HASS)
. oo . . to Table 1l were observed.
As seen in Table | the binding energies obtained by the To summarize, we derived a set of quasiadiabatic coupled
DBS method converge so slowly that errors incurred remain_ . . ' . ot q P
X . . radial equations from those given in the DBS method and
large even in the maximum channéll€20) calculations, o .

; compared it with the exact form of the corresponding AD
where the DBS results are still worse than the AD ones bye uations. We found it likelv that the DBS method causes
one unit. In addition, the tendencies of convergence are op-q y that the

non-negligible errors due to its intrinstic defects that the cou-

posite in both methods. That is, convergence is from below . .
in the DBS method and from above in the AD method.plmgS P(p) and W(p) are approximated as constant even

While the former does not satisfy the variational principle,vw.1en varying sharply and rapidly W'th'.n the sector and that
the latter does strictly. f[hls method (_ioes not guarantee to satlsfy the correct scatter-
The reason for he oppose iecton of convergence i STPAlE SoRaLene, The g scussion e
the DBS method is easily understood from the properties o '9 P 9 9 . . 9
cross sections of thdtu system in then=1 manifold. Fi-

the error in Eq. (14). lts diagonal elements are negative nally it is mentioned that recently an attempt has been made

definite and act on an effectlye f';\d|abat|c potential so that th?0 remedy the drawbacks in the DBS method analyzed in the
depth becomes shallower with increasig X
present articlg10].

The difficulties in the DBS method are further exacer-
bated in the scattering calculations at extremely low ener- K.H. gratefully acknowledges discussions with S. Wa-
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above and spoils the scattering asymptotic conditions tgloratory Research from the Ministry of Education, Science,
some extent. Such a breakdown makes it difficult to extracBports and Culture of Japan and by the National Science
accurate cross sections, though it would affect the bindingroundation under Grant No. PHY-9222489. The work by
energy calculations only slightly. Especially, it is noticeableone of the authorgA.l.) has been done under the Special
for low-energy scattering in the=1 manifold, where an Researchers’ Basic Science Program of RIK&h&titute of
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