Beam guiding with insulator capillary: related papers
10-Jan-2014 http://www.riken.jp/ap/nanobeam/index-en.html
  Tag Year DOI Title Capillary type Insulator material Energy, Particles Reference
    sort            
  AyyadAIPConf2011 2011 http://dx.doi.org/10.1063/1.3586063 Transmission Of Fast Highly Charged Ions Through A Single Glass Macrocapillary Single glass 3 MeV H+,
16 MeV O5+
A. Ayyad, B. S. Dassanayake, A. Kayani, and J. A. Tanis, AIP Conf. Proc. 1336, 91-93 (2011).
  BereczkyNIMB2009 2009 http://dx.doi.org/10.1016/j.nimb.2008.10.080 Transmission of 4.5 keV Ar9+ ions through a single glass macro-capillary Single glass 4.5 keV Ar9+ R. J. Bereczky, G. Kowarik, F. Aumayr, and K. Tőkési, Nucl. Instrum. Methods Phys. Res. B 267, 317-320 (2009).
  BereczkyNIMB2012 2012 http://dx.doi.org/10.1016/j.nimb.2011.10.064 Sample holder for studying temperature dependent particle guiding Single glass keV HCI R. J. Bereczky, G. Kowarik, K. Tőkési, and F. Aumayr, Nucl. Instrum. Methods Phys. Res. B 279, 182-185 (2012).
  BereczkyAIPConf2011 2011 http://dx.doi.org/10.1063/1.3586070 Guiding Of Slow Highly Charged Ions Through A Single Mesoscopic Glass Capillary  Single glass 4.5 keV Ar9+ R. J. Bereczky, G. Kowarik, C. Lemaignan, A. Macé, F. Ladinig, F. Aumayr, and K. Tőkési, AIP Conf. Proc. 1336, 119-122 (2011).
R CassimiIJNT2008 2008 http://dx.doi.org/10.1504/IJNT.2008.018699 Multiply-charged ion nanobeams Single glass 80 keV Ar8+,
230 keV Xe23+
A. Cassimi, T. Muranaka, L. Maunoury, H. Lebius, B. Manil, B. A. Huber, T. Ikeda, Y. Kanai, T. M. Kojima, Y. Iwai, T. Kambara, Y. Yamazaki, T. Nebiki, and T. Narusawa, Int. J. Nanotechnol. 5, 809-817 (2008).
R CassimiNIMB2009 2009 http://dx.doi.org/10.1016/j.nimb.2008.11.016 Imaging dynamics of charge-auto-organisation in glass capillaries Single glass 230 keV Xe23+ A. Cassimi, L. Maunoury, T. Muranaka, B. Huber, K.R. Dey, H. Lebius, D. Lelièvre, J.M. Ramillon, T. Been, T. Ikeda, Y. Kanai, T.M. Kojima, Y. Iwai, Y. Yamazaki, H. Khemliche, N. Bundaleski, and P. Roncin, Nucl. Instrum. Methods Phys. Res. B 267, 674-473 (2009).
R CassimiPRA2012 2012 http://dx.doi.org/10.1103/PhysRevA.86.062902 Dynamics of charge evolution in glass capillaries for 230-keV Xe23+ ions Single glass 230 keV Xe23+ A. Cassimi, T. Ikeda, L. Maunoury, C. L. Zhou, S. Guillous, A. Mery, H. Lebius, A. Benyagoub, C. Grygiel, H. Khemliche, P. Roncin, H. Merabet, and J. A. Tanis, Phys. Rev. A 86, 062902 (2012).
  ChenNIMB2012 2012 http://dx.doi.org/10.1016/j.nimb.2012.04.004 Focusing of 90 keV O6+ ions through a single tapered glass macrocapillary Single glass 90 keV O6+ Jing Chen, Yingli Xue, Junliang Liu, Yehong Wu, Fangfang Ruan, Wei Wang, Deyang Yu, and Xiaohong Cai, Nucl. Instrum. Methods Phys. Res. B 281, 26-29 (2012).
  ChenChinPhysB2009 2009 http://dx.doi.org/10.1088/1674-1056/18/7/019 Guided transmission of oxygen ions through Al2O3 nanocapillaries Foil Al2O3 10-60 keV
O(1+ -  6+)
Chen Yi-Feng, Chen Xi-Meng, Lou Feng-Jun, Xu Jin-Zhang, Shao Jian-Xiong, Sun Guang-Zhi, Wang Jun, Xi Fa-Yuan, Yin Young-Zhi, Wang Xing-An, Xu Jun-Kui, Cui Ying, and
Ding Bao-Wei, Chin. Phys. B 18, 2739 (2009).
  ChenPRA2011 2011 http://dx.doi.org/10.1103/PhysRevA.84.032901 Absence of a guiding effect and charge transfer in the interaction of keV-energy negative ions with Al2O3 nanocapillaries Foil Al2O3 10-18 keV Cu- L. Chen, Y. Guo, J. Jia, H. Zhang, Y. Cui, J. Shao, Y. Yin, X. Qiu, X. Lv, G. Sun, J. Wang, Y. Chen, F. Xi, and X. Chen, Phys. Rev. A 84, 032901 (2011).
  ChenJPhysB2011 2011 http://dx.doi.org/10.1088/0953-4075/44/4/045203 Charge exchange of keV O− ions transmitted through Al2O3 nano-capillaries Foil Al2O3 10-18 keV O- Lin Chen, Xueyang Lv, Juanjuan Jia, Mingchao Ji, Peng Zhou, Guangzhi Sun, Jun Wang, Yifeng Chen, Fayuan Xi, Ying Cui, Jianxiong Shao, Xiyu Qiu, Yanling Guo, and Ximeng Chen, J. Phys. B 44, 045203 (2011).
  DasPRA2007 2007 http://dx.doi.org/10.1103/PhysRevA.76.042716 Inelastic guiding of electrons in polymer nanocapillaries Foil PET 500, 1000 eV e- S. Das, B. S. Dassanayake, M. Winkworth, J. L. Baran, N. Stolterfoht, and J. A. Tanis, Phys. Rev. A 76, 042716 (2007).
  DassanayakeAIPConf2011 2011 http://dx.doi.org/10.1063/1.3586078 Inelastic Transmission Of Electrons Through A SingleMacro-Glass Capillary And Secondary Electron Emission Single glass 300-1000 eV e- B. S. Dassanayake, S. Das, and J. A. Tanis, AIP Conf. Proc. 1336, 154-157 (2011).
  DassanayakeNIMB2011 2011 http://dx.doi.org/10.1016/j.nimb.2010.12.065 Charge evolution and energy loss associated with electron transmission through a macroscopic single glass capillary Single glass 300-1030 eV e- B. S. Dassanayake, S. Das, A. Ayyad, R. J. Bereczky, K. Tőkési, and J. A. Tanis, Nucl. Instrum. Methods Phys. Res. B 269, 1243-1247 (2011).
  DassanayakeNIMB2013 2013 http://dx.doi.org/10.1016/j.nimb.2012.12.017 Temporal evolution of electron transmission through insulating PET nanocapillaries Foil PET 500 eV e- B. S. Dassanayake, D. Keerthisinghe, S. Wickramarachchi, A. Ayyad, S. Das, N. Stolterfoht, and J. A. Tanis, Nucl. Instrum. Methods Phys. Res. B 298, 1-4 (2013).
  DassanayakePRA2010 2010 http://dx.doi.org/10.1103/PhysRevA.81.020701 Energy dependence of electron transmission through a single glass macrocapillary Single glass 300-1000 eV e- B. S. Dassanayake, R. J. Bereczky, S. Das, A. Ayyad, K. Tőkési, and J. A. Tanis, Phys. Rev. A 81, 020701(R) (2010).
  DassanayakePRA2011 2011 http://dx.doi.org/10.1103/PhysRevA.83.012707 Time evolution of electron transmission through a single glass macrocapillary: Charge build-up, sudden discharge, and recovery Single glass 500, 800 eV e- B. S. Dassanayake, R. J. Bereczky, S. Das, A. Ayyad, K. Tőkési, and J. A. Tanis, Phys. Rev. A 83, 012707 (2011).
  DassanayakePhysScr2011 2011 http://dx.doi.org/10.1088/0031-8949/2011/T144/014041 Electron transmission through a single glass macrocapillary: dependence on energy and time Single glass 300-1000 eV e- B. S. Dassanayake, S. Das, A. Ayyad, and J. A. Tanis, Phys. Scr. T 144, 014041 (2011).
  DuBoisNIMB2012 2012 http://dx.doi.org/10.1016/j.nimb.2011.10.041 Can positrons be guided by insulating capillaries? Single glass 100, 500 eV
e+,e-
R.D. DuBois, and K. Tőkési, Nucl. Instrum. Methods Phys. Res. B 279, 186-189 (2012).
  FengPRA2012 2012 http://dx.doi.org/10.1103/PhysRevA.85.064901 Dynamic guiding process of 10-keV O− ions transmitting through Al2O3 nanocapillaries Foil Al2O3 10 keV O- D. Feng, J. X. Shao, L. Zhao, M. C. Ji, X. R. Zou, G. Y. Wang, Y. L. Ma, W. Zhou, H. Zhou, Y. Li, M. Zhou, and X. M. Chen, Phys. Rev. A 85, 064901 (2012).
  FujitaNIMB2011 2011 http://dx.doi.org/10.1016/j.nimb.2010.11.065 Development of two-dimensional mapping technique by in-air-PIXE with metal capillary Single glass 3 MeV H+ N. Fujita, K. Ishii, and H. Ogawa, Nucl. Instrum. Methods Phys. Res. B 269, 1023-1025 (2011).
  FujitaNIMB2013 2013 http://dx.doi.org/10.1016/j.nimb.2013.05.079 Measurements of an ion beam diameter extracted into air through a glass capillary Single glass 3 MeV H+ Natsuko Fujita, Atsuko Yamaki, Kunikazu Ishii, Hidemi Ogawa, Nucl. Instrum. Methods Phys. Res. B 315, 332-335 (2013).
  FujitaPhysScr2011 2011 http://dx.doi.org/10.1088/0031-8949/2011/T144/014033 Transmission properties of glass capillaries for MeV proton and alpha particles  Single glass 3 MeV H+,
5 MeV He2+
N. Fujita, K. Ishii, and H. Ogawa, Phys. Scr. T 144, 014033 (2011).
  FursatzJOP2007 2007 http://dx.doi.org/10.1088/1742-6596/58/1/071 Charging and discharging of nano-capillaries during ion-guiding of multiply charged projectiles Foil PET 12 keV Ar8+ M. Fürsatz, W. Meissl, S. Pleschko, I. C. Gebeshuber, N. Stolterfoht, H. P. Winter, and F. Aumayr, J. Phys. Conf. Ser. 58, 319-322 (2007).
  GalNIMB2012 2012 http://dx.doi.org/10.1016/j.nimb.2011.02.024 Scanning transmission ion microscopy of polycarbonate nanocapillaries Foil PC 2 MeV H+ G. A. B. Gál, I. Rajta, S. Z. Szilasi, Z. Juhász, S. Biri, C. Cserháti, A. Csik, and B. Sulik, Nucl. Instrum. Methods Phys. Res. B 269, 2322-2325 (2011).
  GongNIMB2012 2012 http://dx.doi.org/10.1016/j.nimb.2011.01.103 Study of tapered glass capillary focusing MeV ion beam Single glass 2 MeV He+ Zhiyu Gong, Sha Yan, Hongji Ma, Rui Nie, Jianming Xue, and Yugang Wang, Nucl. Instrum. Methods Phys. Res. B 272, 370-373 (2012).
  GruberPRA2012 2012 http://dx.doi.org/10.1103/PhysRevA.86.062901 Temperature control of ion guiding through insulating capillaries Single glass 1.5-4.5 keV Ar7+ E. Gruber, G. Kowarik, F. Ladinig, J. P. Waclawek, D. Schrempf, F. Aumayr, R. J. Bereczky, K. Tőkési, P. Gunacker, T. Schweigler, C. Lemell, and J. Burgdörfer, Phys. Rev. A 86, 062901 (2012).
  HasegawaJAP2011 2011 http://dx.doi.org/10.1063/1.3624617 Transport mechanism of MeV protons in tapered glass capillaries Single glass 2 MeV H+ Jun Hasegawa, Sarawut Jaiyen, Chalermpong Polee, Nares Chankow, and Yoshiyuki Oguri, J. Appl. Phys. 110, 044913 (2011).
  HasegawaNIMB2008 2008 http://dx.doi.org/10.1016/j.nimb.2008.02.051 A compact micro-beam system using a tapered glass capillary for proton-induced X-ray radiography Single glass 2-3 MeV H+ Jun Hasegawa, Shigeki Shiba, Hitoshi Fukuda, and Yoshiyuki Oguri, Nucl. Instrum. Methods Phys. Res. B 266, 2125-2129 (2008).
  HasegawaNIMB2011 2011 http://dx.doi.org/10.1016/j.nimb.2011.04.073 Development of a micro-PIXE system using tapered glass capillary optics Single glass 2 MeV H+ Jun Hasegawa, Sarawut Jaiyen, Chalermpong Polee, and Yoshiyuki Oguri, Nucl. Instrum. Methods Phys. Res. B 269, 3087-3090 (2011).
  HellhammerNIMB2005 2005 http://dx.doi.org/10.1016/j.nimb.2005.03.051 Interaction of slow highly charged ions with the inner surface of nanocapillaries Foil PET 1-10 keV Ne7+ R. Hellhammer, P. Sobocinski, Z. D. Pešić, J. Bundesmann, D. Fink, and N. Stolterfoht, Nucl. Instrum. Methods Phys. Res. B 232, 235-243 (2005).
  HellhammerNIMB2005B 2005 http://dx.doi.org/10.1016/j.nimb.2005.03.108 Guided transmission of highly charged ions through nanocapillaries in PET: Study of the energy dependence Foil PET 1-10 keV Ne7+ R. Hellhammer, P. Sobocinski, Z. D. Pešić, J. Bundesmann, D. Fink, and N. Stolterfoht, Nucl. Instrum. Methods Phys. Res. B 233, 213-217 (2005).
  HellhammerNIMB2007 2007 http://dx.doi.org/10.1016/j.nimb.2006.12.091 Scaling laws for guiding of highly charged ions through nanocapillaries in insulating PET Foil PET 3-10 keV Ne7+,Ne9+,
7-13 keV Ar13+,
25-40 keV Xe25+
R. Hellhammer, J. Bundesmann, D. Fink, and N. Stolterfoht, Nucl. Instrum. Methods Phys. Res. B 258, 159-162 (2007).
  HellhammerNIMB2007B 2007 http://dx.doi.org/10.1016/j.nimb.2007.04.044 Guiding of highly charged ions through nanocapillaries in PET: Dependence on the projectile energy and charge Foil PET 3-10 keV Ne7+,
3 keV Ne9+,
9 keV Ar9+,
7-13 keV Ar13+,
25-40 keV Xe25+
R. Hellhammer, D. Fink, and N. Stolterfoht, Nucl. Instrum. Methods Phys. Res. B 261, 149-152 (2007).
R IkedaAPL2006 2006 http://dx.doi.org/10.1063/1.2362642 Production of a microbeam of slow highly charged ions with a tapered glass capillary  Single glass 8 keV Ar8+ T. Ikeda, Y. Kanai, T. M. Kojima, Y. Iwai, T. Kambara, Y. Yamazaki, M. Hoshino, T. Nebiki, and T. Narusawa, Appl. Phys. Lett. 89, 163502 (2006).
R IkedaJOP2007 2007 http://dx.doi.org/10.1088/1742-6596/58/1/010 Production of a nm sized slow HCI beam with a guiding effect Single glass 8, 64 keV Ar8+ T. Ikeda, T. M. Kojima, Y. Iwai, Y. Kanai, T. Kambara, T. Nebiki, T. Narusawa, and Y. Yamazaki, J. Phys. Conf. Ser. 58, 68-73 (2007).
R IkedaJOP2007B 2007 http://dx.doi.org/10.1088/1742-6596/88/1/012031 Focusing of charged particle beams with various glass-made optics Single glass 8, 64 keV Ar8+,
104 keV Ar8+,
4 MeV He2+,
13 MeV muon+-
T. Ikeda, Y. Kanai, T. M. Kojima, Y. Iwai, Y. Kanazawa, M. Hoshino, T. Kobayashi, G.P. Pokhil, and Y. Yamazaki, J. Phys. Conf.Ser. 88, 012031 (2007).
R IkedaJOP2012 2012 http://dx.doi.org/10.1088/1742-6596/399/1/012007 Application of keV and MeV ion microbeams through tapered glass capillaries Single glass 8, 64 keV Ar8+,
2, 3 MeV H+,
T. Ikeda, T. M. Kojima, T. Kobayashi, W. Meissl, V. Mäckel, Y. Kanai and Y. Yamazaki, J. Phys. Conf.Ser. 399, 012007 (2012).
R IkedaNIMB2012 2012 http://dx.doi.org/10.1016/j.nimb.2012.06.001 Resistive switching induced on a glass plate by ion beam irradiation Single glass 104 keV Ar8+ Tokihiro Ikeda, Yoshio Iwai, Takao M. Kojima, Shigeki Onoda, Yasuyuki Kanai, and Yasunori Yamazaki, Nucl. Instrum. Methods Phys. Res. B 287, 31-34 (2012).
R IkedaSCT2011 2011 http://dx.doi.org/10.1016/j.surfcoat.2011.03.098 Glass capillary optics for producing nanometer sized beams and its applications Single glass 8, 64 keV Ar8+,
104 keV Ar8+,
4 MeV He2+
Tokihiro Ikeda, Yasuyuki Kanai, Yoshio Iwai, Takao M. Kojima, Kazuhiro Maeshima, Walter Meissl, Tomohiro Kobayashi, Takuya Nebiki, So Miyamoto, Grigory P. Pokhil,Tadashi Narusawa, Naoko Imamoto, and Yasunori Yamazaki, Surf. Cort. Technol. 206, 859-863 (2011).
R IwaiAPL2008 2008 http://dx.doi.org/10.1063/1.2834695 Ion irradiation in liquid of μm3 region for cell surgery Single glass 3, 4 MeV He2+ Y. Iwai, T. Ikeda, T. M. Kojima, Y. Yamazaki, K. Maeshima, N. Imamoto, T. Kobayashi, T. Nebiki, T. Narusawa, and G. P. Pokhil, Appl. Phys. Lett. 92, 023509 (2008).
  JaiyenNIMB2012 2012 http://dx.doi.org/10.1016/j.nimb.2011.10.008 Effect of wall material and shape on MeV ion focusing ability of tapered capillary optics Single glass 2 MeV H+ Sarawut Jaiyen, Nares Chankow, Jun Hasegawa, and Yoshiyuki Oguri, Nucl. Instrum. Methods Phys. Res. B 271, 13-18 (2012).
R JinJCompComu2013 2013 http://dx.doi.org/10.4236/jcc.2013.17002  Light Microbeams by Tapered Glass Capillaries for Biological Irradiation Single glass Visible light Wei-Guo Jin, Kyohei Katoh, Tatsuya Minowa, and Tokihiro Ikeda, J. Comput. Commun. 1, 5-8 (2013).
  JuhaszNIMB2009 2009 http://dx.doi.org/10.1016/j.nimb.2008.10.017 Ion guiding in alumina capillaries: MCP images of the transmitted ions Foil Al2O3 3, 6 keV Ne6+ Z. Juhász, B. Sulik, S. Biri, I. Iván, K. Tőkési, É. Fekete, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, Gy. Víkor, E. Takács, and J. Pálinkás, Nucl. Instrum. Methods Phys. Res. B 267, 321-325 (2009).
  JuhaszNIMB2012 2012 http://dx.doi.org/10.1016/j.nimb.2011.10.051 Guided transmission of 3 keV Ar7+ ions through dense polycarbonate nanocapillary arrays: Blocking effect and time dependence of the transmitted neutrals Foil PC 3 keV Ar7+ Z. Juhász, S.T.S. Kovács, P. Herczku, R. Rácz, S. Biri, I. Rajta, G.A.B. Gál, S.Z. Szilasi, J. Pálinkás, and B. Sulik, Nucl. Instrum. Methods Phys. Res. B 279, 177-181 (2012).
  JuhaszPRA2010 2010 http://dx.doi.org/10.1103/PhysRevA.82.062903 Ion guiding accompanied by formation of neutrals in polyethylene terephthalate polymer nanocapillaries: Further insight into a self-organizing process Foil PET 3 keV Ar7+ Z. Juhász, B. Sulik, R. Rácz, S. Biri, R. J. Bereczky, K. Tőkési, \'A. Kövér, J. Pálinkás, and N. Stolterfoht, Phys. Rev. A 82, 062903 (2010).
R KanaiICPEAC2005 2005 http://www.icpeac2005.cnea.gov.ar/ Two dimensional images of ions transmitted through insulator capillaries under beam guiding conditions Foil PET 7 keV Ne7+ Y. Kanai, M. Hoshino, T. Kambara, Y. Yamazaki, R. Hellhammer, and N. Stolterfoht, in {\it Proceedings of the XXIVth International Conference on Photonic, Electronic, and Atomic Collisions,} edited by F. D. Colaveccio et al. (Rosario, Argentina, 2005) p. Fr131.
R KanaiNIMB2007 2007 http://dx.doi.org/10.1016/j.nimb.2006.12.090 Two-dimensional images of transmitted slow neon ions guided by nanocapillaries in polymer foils Foil PET 3.5-7 keV Ne7+ Y. Kanai, M. Hoshino, T. Kambara, T. Ikeda, R. Hellhammer, N. Stolterfoht, and Y. Yamazaki, Nucl. Instrum. Methods Phys. Res. B 258, 155-158 (2007).
R KanaiJOP2009 2009 http://dx.doi.org/10.1088/1742-6596/194/1/012068 Guiding of slow highly charged ions through nanocapillaries – dynamic aspect – Foil PET 3.5-7 keV Ne7+ Y. Kanai, M. Hoshino, T. Kambara, T. Ikeda, R. Hellhammer, N. Stolterfoht, and Y. Yamazaki, J.Phys. Conf. Ser. 194, 012068 (2009).
R KanaiPRA2009 2009 http://dx.doi.org/10.1103/PhysRevA.79.012711 Dynamic features of ion guiding by nanocapillaries in an insulating polymer Foil PET 3.5-7 keV Ne7+ Y. Kanai, M. Hoshino, T. Kambara, T. Ikeda, R. Hellhammer, N. Stolterfoht, and Y. Yamazaki, Phys. Rev. A 79, 012711 (2009).
R KatoAPL2012 2012 http://dx.doi.org/10.1063/1.4714911 Real-time observation of Escherichia coli cells under irradiation with a 2-MeV H+ microbeam Single glass 2 MeV H+ Mikio Kato, Walter Meissl, Kenji Umezawa, Tokihiro Ikeda, and Yasunori Yamazaki, Appl. Phys. Lett. 100, 193702 (2012).
  KeerthisingheAIPProc2013 2013 http://dx.doi.org/10.1063/1.4802285 Transmission and guiding of fast electrons through insulating PET nanocapillaries Foil PET 500, 800 eV e- D. Keerthisinghe, B.S. Dassanayake, S. Wickramarachchi, A. Ayyad, N. Stolterfoht, and J.A. Tanis, AIP Conf. Proc. 1525, 36-39 (2013).
  KeerthisingheNIMB2013 2013 http://dx.doi.org/10.1016/j.nimb.2013.01.047 Charge deposition dependence and energy loss of electrons transmitted through insulating PET nanocapillaries Foil PET 500, 800 eV e- D. Keerthisinghe, B.S. Dassanayake, S.J. Wickramarachchi, N. Stolterfoht, and J.A. Tanis, Nucl. Instrum. Methods Phys. Res. B 317, 105-108 (2013).
R KobayashiNIMB2012 2012 http://dx.doi.org/10.1016/j.nimb.2011.04.116 Surface modification of polymers by ion irradiation at the solid–liquid interface Single glass 3 MeV H+ Tomohiro Kobayashi, So Miyamoto, Tokihiro Ikeda, Takao M. Kojima, Kiyoshi Ogiwara, and Yasunori Yamazaki, Nucl. Instrum. Methods Phys. Res. B 272, 405-408 (2012).
R KojimaJPD2011 2011 http://dx.doi.org/10.1088/0022-3727/44/35/355201 Ion beam guiding with straight and curved Teflon tubes
Single Teflon 8 keV Ar8+ Takao M Kojima, Tokihiro Ikeda, Yasuyuki Kanai, Yasunori Yamazaki, and Vladimir A Esaulov, J. Phys. D: Appl. Phys. 44, 355201 (2011).
R KojimaJPSJ2007 2007 http://dx.doi.org/10.1143/JPSJ.76.093501 Density Enhancement of Muon Beams with Tapered Glass Tubes Single glass 13 MeV muon+- T. M. Kojima, D. Tomono, T. Ikeda, K. Ishida, Y. Iwai, M. Iwasaki, Y. Matsuda, T. Matsuzaki, and Y. Yamazaki, J. Phys. Soc. Jpn. 76, 9, 093501 (2007).
  KowarikNIMB2009 2009 http://dx.doi.org/10.1016/j.nimb.2009.03.086 Production of a microbeam of slow highly charged ions with a single microscopic glass capillary Single glass 4.5 keV A9+ G. Kowarik, R.J. Bereczky, F. Aumayr, and K. Tőkési, Nucl. Instrum. Methods Phys. Res. B 267, 2277-2279 (2009).
  KrauseJOP2007 2007 http://dx.doi.org/10.1088/1742-6596/58/1/072 Angular distribution of ions transmitted by an anodic nanocapillary array Foil Al2O3 5-20 keV/q
Ne(1+,3+,7+)
H. F. Krause, C. R. Vane, F. W. Meyer, and H. M. Christen, J. Phys. Conf. Ser. 58, 323-326 (2007).
  KrausePRA2007 2007 http://dx.doi.org/10.1103/PhysRevA.75.042901 Ions transmitted through an anodic nanocapillary array Foil Al2O3 10-20 keV/q
Ar(1+,3+), Ne(3+,7+)
H. F. Krause, C.R. Vane, and F.W. Meyer, Phys. Rev. A 75, 042901 (2007).
  KrellerJOP2009 2009 http://dx.doi.org/10.1088/1742-6596/163/1/012090 Guiding of Argon ions through PET nano capillary foils  Foil PET 0.6-9.6 keV
Ar(3+ - 12+)
M. Kreller, G. Zschornack, and U. Kentsch, J. Phys. Conf. Ser. 163, 021090 (2009).
  KrellerNIMB2011 2011 http://dx.doi.org/10.1016/j.nimb.2010.12.060 Guiding of argon ions through a tapered glass capillary Single glass 8-60 keV Ar8+ M. Kreller, G. Zschornack, and U. Kentsch, Nucl. Instrum. Methods Phys. Res. B 269, 1032-1035 (2011).
  KrellerNIMB2013 2013 http://dx.doi.org/10.1016/j.nimb.2013.04.007 Deceleration of Ar9+ ions within a tapered glass capillary Single glass 76.5 keV Ar9+ M. Kreller, G. Zschornack, and U. Kentsch, Nucl. Instrum. Methods Phys. Res. B 305, 37-39 (2013).
  KumarNanoTec2005 2005 http://dx.doi.org/10.1088/0957-4484/16/9/048 Fabrication of silicon dioxide nanocapillary arrays for guiding highly charged ions  Foil SiO2 fabrication R. T. Rajendra Kumar, X. Badel, Gy. Víkor, J. Linnros, and R. Schuch, Nanotechnology 16, 1697-1700 (2005).
  LemellNIMB2007 2007 http://dx.doi.org/10.1016/j.nimb.2006.11.112 Simulation of heavy-ion guiding in insulators Foil Simulation keV HCI C. Lemell, K. Schiessl, H. Nowotny, and J. Burgdörfer, Nucl. Instrum. Methods Phys. Res. B 256, 66-70 (2007).
  LemellPSS2013 2013 http://dx.doi.org/10.1016/j.progsurf.2013.06.001 Interaction of charged particles with insulating capillary targets – The guiding effect Review Review Review C. Lemell, J. Burgdörfer, and Friedrich Aumayr, Progress in Surface Science 88, 237-238 (2013).
  LiNIMB2009 2009 http://dx.doi.org/10.1016/j.nimb.2008.11.041 The influence of the charged back side on the transmission of highly charged ions through PC nanocapillaries Foil PC 40, 200 keV Xe7+ D. H. Li, Y. Y. Wang, Y. T. Zhao, G. Q. Xiao, D. Zhao, Z. F. Xu, and F. L. Li, Nucl. Instrum. Methods Phys. Res. B 267, 469-473 (2009).
R MaeckelRSI2014 2014 http://dx.doi.org/10.1063/1.4859499  A novel facility for 3D micro-irradiation of living cells in a controlled environment by MeV ions Single glass 1 MeV H+
2 MeV He2+
V. Mäckel, W. Meissl, T. Ikeda, M. Clever, E. Meissl, T. Kobayashi, T. M. Kojima, N. Imamoto, K. Ogiwara and Y. Yamazaki, Rev. Sci. Instrum. 85, 014302 (2014).
  MatefiNanoTec2006 2006 http://dx.doi.org/10.1088/0957-4484/17/15/050 Guided transmission of slow Ne6+ ions through the nanochannels of highly ordered anodic alumina  Foil Al2O3 3 keV Ne6+ S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Piraux, Z. Juhász, S Biri, É Fekete, I Iván, F Gáll, B Sulik, Gy Víkor, J Pálinkás, and N Stolterfoht, Nanotechnology 17, 3915 (2006).
  MengChinPhysB2009 2009 http://dx.doi.org/10.1088/1674-1056/18/5/038 Guiding of 150 keV O6+ ions through nanocapillaries in an uncoated Al2O3 membrane: special time dependence of the transmission profile width Foil Al2O3 150 keV O6+ Chen Xi-Meng, Xi Fa-Yuan, Qiu Xi-Yu, Shao Jian-Xiong, Xiao Guo-Qing, Cui Ying, Sun Guang-Zhi, Wang Jun, Chen Yi-Feng, Liu Hui-Ping, Yin Yong-Zhi, Wang Yu-Yu, Li De-Hui, Lou Feng-Jun, Wang Xing-An, Xu Jun-Kui, and Zhou Chun-Lin, Chin. Phys. B 18, 1955-1960 (2009).
  MilosavljevicEPL2009 2009 http://dx.doi.org/10.1209/0295-5075/86/23001 Low-energy electron transmission through high aspect ratio Al2O3 nanocapillaries Foil Al2O3 2-120 eV e- A. R. Milosavljević, J. Jureta, Gy. Víkor, Z. D. Pešić, D. Šević, M. Mátéfi-Tempfli, S. Mátéfi-Tempfli, and B. P. Marinković, Europhysics Letters 86, 23001 (2009).
  MilosavljevicJOP2012 2012 http://dx.doi.org/10.1088/1742-6596/388/1/012050 Transmission of electrons through Al2O3 nanocapillaries Foil Al2O3 250 eV e- A. R. Milosavljević, J. Jureta, Gy. Víkor, Z. D. Pešić, M. Mátéfi-Tempfli, S. Mátéfi-Tempfli, and B. P. Marinković, J. Phys. Conf.Ser. 388, 012050 (2012).
  MilosavljevicNIMB2012 2012 http://dx.doi.org/10.1016/j.nimb.2011.10.034 Charging dynamics in electron transmission through Al2O3 capillaries Foil Al2O3 250 eV e- A. R. Milosavljević, K. Schiessl, C. Lemell, K. Tőkési, M. Mátéfi-Tempfli, S. Mátéfi-Tempfli, B. P. Marinković, and J. Burgdörfer, Nucl. Instrum. Methods Phys. Res. B 279, 190-193 (2012).
  MilosavljevicPRA2007 2007 http://dx.doi.org/10.1103/PhysRevA.75.030901 Guiding of low-energy electrons by highly ordered Al2O3 nanocapillaries Foil Al2O3 200-350 eV e- A. R. Milosavljević, Gy. Víkor, Z. D. Pešić, P. Kolar\v{z}, D. Šević, B. P. Marinković, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, and L. Piraux, Phys. Rev. A 75, 030901 (2007).
  NagyAIPProc2013 2013 http://dx.doi.org/10.1063/1.4802286 Experimental setup for studying guiding of proton microbeam Single glass 1 MeV H+ G.U.L. Nagy, I. Rajta, R.J. Bereczky, and K. Tőkési, AIP Conf. Proc. 1525, 40-42 (2013).
  NakayamaNIMB2009 2009 http://dx.doi.org/10.1016/j.nimb.2009.04.008 Guiding and blocking of highly charged ions through a single glass capillary Single glass 3 keV/q
I(10+ - 50+)
R. Nakayama, M. Tona, N. Nakamura, H. Watanabe, N. Yoshiyasu, C. Yamada, A. Yamazaki, S. Ohtani, and M. Sakurai, Nucl. Instrum. Methods Phys. Res. B 267, 2381-2384 (2009).
  NebikiJVSTecA2003 2003 http://dx.doi.org/10.1116/1.1597889 Focusing of MeV ion beams by means of tapered glass capillary optics Single glass 2 MeV He+ T. Nebiki, T. Yamamoto, T. Narusawa, M. B. H. Breese, E. J. Teo, and F. Watt, J. Vac. Sci. Technol. A 21, 5, 1671-1674 (2003).
  NebikiNIMB2006 2006 http://dx.doi.org/10.1016/j.nimb.2006.04.003 In-air PIXE analysis by means of glass capillary optics Single glass 4 MeV He2+ T. Nebiki, M. H. Kabir, and T. Narusawa, Nucl. Instrum. Methods Phys. Res. B 249, 226-229 (2006).
  NebikiNIMB2008 2008 http://dx.doi.org/10.1016/j.nimb.2008.01.022 Taper angle dependence of the focusing effect of high energy heavy ion beams by glass capillaries Single glass 6.4 MeV 15N2+ T. Nebiki, D. Sekiba, H. Yonemura, M. Wilde, S. Ogura, H. Yamashita, M. Matsumoto, K. Fukutani, T. Okano, J. Kasagi, Y. Iwamura, T. Itoh, S. Kuribayashi, H. Matsuzaki, and T. Narusawa, Nucl. Instrum. Methods Phys. Res. B 266, 1324-1327 (2008).
R OshimaMateSciForm2009 2009 http://dx.doi.org/10.4028/www.scientific.net/MSF.607.263 Guiding of a Slow Positron Beam with a Glass Capillary Single glass 10 keV e+ N. Oshima, Y. Iwai, T. M. Kojima, T. Ikeda, Y. Kanazawa, M. Hoshino, R. Suzuki, and Y. Yamazaki, Mater. Sci. Forum 607, 263-265 (2009).
  PaulAPL2012 2012 http://dx.doi.org/10.1063/1.4768002 Observation of threshold energy and hysteresis in high current ion beam guiding and transmission through a micro-glass-capillary Single glass 0-4.5 keV Ar ions Samit Paul, A. Jayakiran, and Sudeep Bhattacharjee, Appl. Phys. Lett. 101, 223508 (2012).
  SahanaPRA2006 2006 http://dx.doi.org/10.1103/PhysRevA.73.040901 Guiding of highly charged ions by highly ordered SiO2 nanocapillaries Foil SiO2 7 keV Ne7+ M. B. Sahana, P. Skog, Gy. Víkor, R. T. Rajendra Kumar, and R. Schuch, Phys. Rev. A 73, 040901 (2006).
  SchiesslJOP2009 2009 http://dx.doi.org/10.1088/1742-6596/163/1/012081 Energy dependence of ion guiding through nanocapillaries Foil Simulation keV HCI K. Schiessl, C. Lemell, K. Tőkési, and J. Burgdörfer, J. Phys. Conf. Ser. 163, 012081 (2009).
  SchiesslJOP2009B 2009 http://dx.doi.org/10.1088/1742-6596/194/1/012069 Simulation of charged particle guiding through insulating nanocapillaries Foil Simulation keV HCI K. Schiessl, C. Lemell, K. Tőkési, and J. Burgdörfer, J. Phys. Conf. Ser. 194, 012069 (2009).
  SchiesslNIMB2005 2005 http://dx.doi.org/10.1016/j.nimb.2005.03.050 Simulation of guiding of highly charged projectiles through insulating nanocapillaries Foil Simulation keV HCI K. Schiessl, W. Palfinger, C. Lemell, and J. Burgdörfer, Nucl. Instrum. Methods Phys. Res. B 232, 228-234 (2005).
  SchiesslNIMB2007 2007 http://dx.doi.org/10.1016/j.nimb.2006.12.135 Simulation of ion guiding through insulating capillaries: Effects of inter-capillary interaction Foil Simulation keV HCI K. Schiessl, W. Palfinger, K. Tőkési, H. Nowotny, C. Lemell, and J. Burgdörfer, Nucl. Instrum. Methods Phys. Res. B 258, 150-154 (2007).
  SchiesslPRA2005 2005 http://dx.doi.org/10.1103/PhysRevA.72.062902 Simulation of guiding of multiply charged projectiles through insulating capillaries Foil Simulation keV HCI K. Schiessl, W. Palfinger, K. Tőkési, H. Nowotny, C. Lemell, and J. Burgdörfer, Phys. Rev. A 72, 062902 (2005).
  SchiesslPRL2009 2009 http://dx.doi.org/10.1103/PhysRevLett.102.163201 Electron Guiding through Insulating Nanocapillaries Foil Simulation 500 eV e- K. Schiessl, K. Tőkési, B. Solleder, C. Lemell, and J. Burgdörfer, Phys. Rev. Lett. 102, 163201 (2009).
  SchweiglerNIMB2011 2011 http://dx.doi.org/10.1016/j.nimb.2010.11.037 Simulation of transmission of slow highly charged ions through insulating tapered macro-capillaries Foil Simulation keV HCI T. Schweigler, C. Lemell, and J. Burgdörfer, Nucl. Instrum. Methods Phys. Res. B 269, 1253-1256 (2011).
  SekibaNIMB2008 2008 http://dx.doi.org/10.1016/j.nimb.2008.06.032 Development of micro-beam NRA for 3D-mapping of hydrogen distribution in solids: Application of tapered glass capillary to 6 MeV 15N ion Single glass 6 MeV 15N2+ D. Sekiba, H. Yonemura, T. Nebiki, M. Wilde, S. Ogura, H. Yamashita, M. Matsumoto, J. Kasagi, Y. Iwamura, T. Itoh, H. Matsuzaki, T. Narusawa, and K. Fukutani, Nucl. Instrum. Methods Phys. Res. B 266, 4027-4036 (2008).
  SimonNIMB2012 2012 http://dx.doi.org/10.1016/j.nimb.2011.07.084 In-air STIM with a capillary microprobe Single glass 1-3 MeV H+ M. J. Simon, M. Döbeli, A. M. Müller, and H.-A. Synal, Nucl. Instrum. Methods Phys. Res. B 273, 237-240 (2012).
  SkogNIMB2007 2007 http://dx.doi.org/10.1016/j.nimb.2006.12.127 Guiding of highly charged ions through Al2O3 nano-capillaries Foil Al2O3 7 keV Ne7+ P. Skog, I. L. Soroka, A. Johansson, and R. Schuch, Nucl. Instrum. Methods Phys. Res. B 258, 145-149 (2007).
  SkogPRL2008 2008 http://dx.doi.org/10.1103/PhysRevLett.101.223202 Evidence of Sequentially Formed Charge Patches Guiding Ions through Nanocapillaries Foil SiO2 7 keV Ne7+ P. Skog, HQ. Zhang, and R. Schuch, Phys. Rev. Lett. 101, 223202 (2008).
  StolterfohtNIMB2003 2003 http://dx.doi.org/10.1016/S0168-583X(02)02224-3 Guided transmission of 3 keV Ne7+ ions through nanocapillaries etched in a PET polymer Foil PET 3 keV Ne7+ N. Stolterfoht, V. Hoffmann, R. Hellhammer, Z. D. Pešić, D. Fink, A. Petrov, and B. Sulik, Nucl. Instrum. Methods Phys. Res. B 203, 246-253 (2003).
  StolterfohtNIMB2004 2004 http://dx.doi.org/10.1016/j.nimb.2004.06.003 Time evolution of ion guiding through nanocapillaries in a PET polymer Foil PET 1.6 keV H+,
3 keV Ne7+
N. Stolterfoht, R. Hellhammer, Z. D. Pešić, V. Hoffmann, J. Bundesmann, A. Petrov, D. Fink, B. Sulik, M. Shah, K. Dunn, J. Pedregosa, and R. W. McCullough, Nucl. Instrum. Methods Phys. Res. B 225, 169-177 (2004).
  StolterfohtNIMB2005 2005 http://dx.doi.org/10.1016/j.nimb.2005.03.225 Guiding of slow neon and molecular hydrogen ions through nanocapillaries in PET Foil PET 3 keV Ne7+,
1 keV H_2^+,H_3^+
N. Stolterfoht, R. Hellhammer, P. Sobocinski, Z. D. Pešić, J. Bundesmann, B. Sulik, M. B. Shah, K. Dunn, J. Pedregosa, and R. W. McCullough, Nucl. Instrum. Methods Phys. Res. B 235, 460-467 (2005).
  StolterfohtNIMB2009 2009 http://dx.doi.org/10.1016/j.nimb.2008.10.046 Density effects on the guided transmission of 3 keV Ne7+ ions through PET nanocapillaries Foil PET 3 keV Ne7+ N. Stolterfoht, R. Hellhammer, J. Bundesmann, and D. Fink, Nucl. Instrum. Methods Phys. Res. B 267, 226-230 (2009).
  StolterfohtNIMB2009B 2009 http://dx.doi.org/10.1016/j.nimb.2008.10.069 Time evolution of ion guiding through nanocapillaries in a PET polymer Foil PET 3 keV Ne7+ N. Stolterfoht, R. Hellhammer, B. Sulik, Z. Juhasz, E. Bodewits, H. M. Dang, and R. Hoekstra, Nucl. Instrum. Methods Phys. Res. B 267, 669-673 (2009).
  StolterfohtNIMB2013 2013 http://dx.doi.org/10.1016/j.nimb.2013.01.051 Experiments and simulations of ion guiding through nanocapillaries in insulating polymers Foil PET/PC 3 keV Ne7+
(Simulation)
Nikolaus Stolterfoht, Nucl. Instrum. Methods Phys. Res. B 317, 96-100 (2013).
R StolterfohtPRA2007 2007 http://dx.doi.org/10.1103/PhysRevA.76.022712 Guiding of slow Ne7+ ions through nanocapillaries in insulating polyethylene terephthalate: Incident current dependence Foil PET 3, 3.5 keV Ne7+ N. Stolterfoht, R. Hellhammer, J. Bundesmann, D. Fink, Y. Kanai, M. Hoshino, T. Kambara, T. Ikeda, and Y. Yamazaki, Phys. Rev. A 76, 022712 (2007).
  StolterfohtPRA2008 2008 http://dx.doi.org/10.1103/PhysRevA.77.032905 Scaling laws for guiding of highly charged ions through nanocapillaries in an insulating polymer Foil PET 3-10 keV Ne7+, Ne9+,
7-13 keV Ar9+, Ar13+,
25-40 keV Xe25+
N. Stolterfoht, R. Hellhammer, J. Bundesmann, and D. Fink, Phys. Rev. A 77, 032905 (2008).
  StolterfohtPRA2009 2009 http://dx.doi.org/10.1103/PhysRevA.79.022901 Dynamic properties of ion guiding through nanocapillaries in an insulating polymer Foil PET 3 keV Ne7+ N. Stolterfoht, R. Hellhammer, D. Fink, B. Sulik, Z. Juhász, E.. Bodewits, H. M. Dang, and R. Hoekstra, Phys. Rev. A 79, 022901 (2009).
  StolterfohtPRA2009B 2009 http://dx.doi.org/10.1103/PhysRevA.79.042902 Guided transmission of Ne7+ ions through nanocapillaries in insulating polymers: Scaling laws for projectile energies up to 50 keV Foil PET/PC 3, 10, 20, 50 keV
Ne7+
N. Stolterfoht, R. Hellhammer, Z. Juhász, B. Sulik, V. Bayer, C. Trautmann, E.. Bodewits, A. J. de Nijs, H. M. Dang, and R. Hoekstra, Phys. Rev. A 79, 042902 (2009).
  StolterfohtPRA2010 2010 http://dx.doi.org/10.1103/PhysRevA.82.052902 Guided transmission of 3-keV Ne7+ ions through nanocapillaries in insulating polymers: Dependence on the capillary diameter Foil PET 3 keV Ne7+ N. Stolterfoht, R. Hellhammer, Z. Juhász, B. Sulik, E.. Bodewits, H. M. Dang, and R. Hoekstra, Phys. Rev. A 82, 052902 (2010).
  StolterfohtPRA2011 2011 http://dx.doi.org/10.1103/PhysRevA.83.062901 Evidence of blocking effects on 3-keV Ne7+ ions guided through nanocapillaries in polycarbonate Foil PET/PC 3 keV Ne7+ N. Stolterfoht, R. Hellhammer, B. Sulik, Z. Juhasz, V. Bayer, C. Trautmann, E. Bodewits, and R. Hoekstra, Phys. Rev. A 83, 062901 (2011).
  StolterfohtPRA2013 2013 http://dx.doi.org/10.1103/PhysRevA.87.012902 Simulation and analysis of ion guiding through a nanocapillary in insulating polymers Foil PET/PC 3 keV Ne7+ (Simulation) N. Stolterfoht, Phys. Rev. A 87, 012902 (2013).
  StolterfohtPRA2013B 2013 http://dx.doi.org/10.1103/PhysRevA.87.032901 Simulations and analytic models of ion guiding through a nanocapillary in insulating polymers Foil PET/PC 3 keV Ne7+ (Simulation) N. Stolterfoht, Phys. Rev. A 87, 032901 (2013).
  StolterfohtPRA2013C 2013 http://dx.doi.org/10.1103/PhysRevA.88.032902 Areal density effects on the blocking of 3-keV Ne7+ ions guided through nanocapillaries in polymers Foil PET 3 keV Ne7+ N. Stolterfoht, R. Hellhammer B. Sulik, Z. Juhász, V. Bayer, C. Trautmann, E. Bodewits, G. Reitsma, and R. Hoekstra, Phys. Rev. A 88, 032902 (2013).
  StolterfohtPRL2002 2002 http://dx.doi.org/10.1103/PhysRevLett.88.133201 Transmission of 3 keV Ne7+ Ions through Nanocapillaries Etched in Polymer Foils: Evidence for Capillary Guiding Foil PET 3 keV Ne7+ N. Stolterfoht, J.-H. Bremer, V. Hoffmann, R. Hellhammer, D. Fink, A. Petrov, and B. Sulik, Phys. Rev. Lett. 88, 133201 (2002).
  StolterfohtSCT2004 2004 http://dx.doi.org/10.1016/j.surfcoat.2004.08.156 Guiding of slow Ne7+ ions through nanocapillaries in a PET polymer: dependence on the capillary diameter Foil PET 3 keV Ne7+ N. Stolterfoht, R. Hellhammer, Z. D. Pešić, V. Hoffmann, J. Bundesmann, A. Petrov, D. Fink, and B. Sulik, Surf. Coating Technol. 196, 389 (2005).
  StolterfohtVacuum2004 2004 http://dx.doi.org/10.1016/j.vacuum.2003.12.024 Guided transmission of Ne7+ ions through nanocapillaries in PET: dependence on the tilt angle Foil PET 3 keV Ne7+ N. Stolterfoht, R. Hellhammer, Z. D. Pešić, V. Hoffmann, J. Bundesmann, A. Petrov, D. Fink, and B. Sulik, Vacuum. 73, 31-37 (2004).
  SunPRA2009 2009 http://dx.doi.org/10.1103/PhysRevA.79.052902 Interaction of 18-keV O− ions with Al2O3 nanocapillaries Foil Al2O3 18 keV O- Guangzhi Sun, Ximeng Chen, Jun Wang, Yifeng Chen, Junkui Xu, Chunlin Zhou, Jianxiong Shao, Ying Cui, Baowei Ding, Yongzhi Yin, Xin'an Wang, Fengjun Lou, Xueyang Lv, Xiyu Qiu, Juanjuan Jia, Lin Chen, Fayuan Xi, Zichun Chen, Lanting Li, and Zhaoyuan Liu, Phys. Rev. A. 79, 052902 (2009).
  TokesiNIMB2012 2012 http://dx.doi.org/10.1016/j.nimb.2011.10.058 Investigation of MeV proton microbeam transmission between two flat plates – The cases of metallic and insulator plates Single glass 1, 2 MeV H+ K. Tőkési, I. Rajta, R.J. Bereczky, and K. Vad, Nucl. Instrum. Methods Phys. Res. B 279, 173-176 (2012).
  TokesiAIPProc2013 2013 http://dx.doi.org/10.1063/1.4802369 Interaction of light particles with capillaries Single glass 100-500 eV
e-/e+
K. Tőkési, and R. D. DuBois, AIP Conf. Proc. 1525, 452-454 (2013).
R TomonoJPSJ2011 2011 http://dx.doi.org/10.1143/JPSJ.80.044501 Focusing Effect of MeV Muon Beam with a Tapered Capillary Method Single glass 4.3-9.3 MeV
muon+
D. Tomono, T. M. Kojima, K. Ishida, T. Ikeda, Y. Iwai, M. Tokuda, Y. Kanazawa, Y. Matsuda, T. Matsuzaki, M. Iwasaki, and Y. Yamazaki, J. Phys. Soc. Jpn. 80, 044501 (2011).
  TsuchidaNIMB2012 2012 http://dx.doi.org/10.1016/j.nimb.2012.09.035 Properties of fast carbon cluster microbeams produced with a tapered capillary Single glass Carbon clusters:
0.24-0.96 MeV/atom C_2^+,
0.24 MeV/atom C_3^+,
0.24 MeV/atom C_4^+
Hidetsugu Tsuchida, Shigeo Tomita, Kazushige Nishimura, Ryohei Murakoshi, Masahiro Naitoh, Kimikazu Sasa, Satoshi Ishii, Akifumi Yogo, and Akio Itoh, Nucl. Instrum. Methods Phys. Res. B 293, 6-10 (2012).
  TsuchidaNIMB2013 2013 http://dx.doi.org/10.1063/1.4802369 Transmission properties of C60 ions through micro- and nano-capillaries Single
Foil
glass
Al2O3
Carbon clusters:
360 keV C_60^+, C_60^2+
720 keV C_60^2+
Hidetsugu Tsuchida, Takuya Majima, Shigeo Tomita, Kimikazu Sasa, Kazumasa Narumi, Yuichi Saitoh, Atsuya Chiba, Keisuke Yamada, Koichi Hirata, Hiromi Shibata, and Akio Itoh, Nucl. Instrum. Methods Phys. Res. B 315, 336-340 (2013).
  VikorNIMB2005 2005 http://dx.doi.org/10.1016/j.nimb.2005.03.109 Guiding of slow highly charged ions by nanocapillaries in PET Foil PET 7 keV Ne7+ Gy. Víkor, R. T. Rajendra Kumar, Z. D. Pešić, N. Stolterfoht, and R. Schuch, Nucl. Instrum. Methods Phys. Res. B 233, 218-221 (2005).
  VokhmyaninaJOP2006 2006 http://dx.doi.org/10.1088/0305-4470/39/17/S73 Transportation and focusing of accelerated proton beams by means of dielectric channels Single glass 100-300 keV H+ K. A. Vokhmyanina, L. A. Zhilyakov, A. V. Kostanovsky, V. S. Kulikauskas, V. P. Petukhov, and G. P. Pokhil, J. Phys. A 39, 4775-4779 (2006).
  WangNIMB2012 2012 http://dx.doi.org/10.1016/j.nimb.2012.02.015 Transmission of 16 keV Cu– ions through Al2O3 nano-capillaries Foil Al2O3 16 keV Cu- Hongwei Wang, Lin Chen, Xueyang Lv, Chunlin Zhou, Juanjuan Jia, Peng Zhou, Jianxiong Shao, Mingchao Ji, and Ximeng Chen, Nucl. Instrum. Methods Phys. Res. B 286, 351-354 (2012).
  WangJOP2009 2009 http://dx.doi.org/10.1088/1742-6596/163/1/012093 Transmission of low-energy electrons through SiO2 tube Single glass 1100-1500 eV e- Wei Wang, Dejun Qi, Deyang Yu, Mingwu Zhang, Fangfang Ruan, Jing Chen, and Xiaohong Cai, J. Phys. Conf. Ser. 163, 012093 (2009).
  WangPhysScr2011 2011 http://dx.doi.org/10.1088/0031-8949/2011/T144/014023 Transmission of electrons through a tapered glass capillary  Single glass 1-1.4 keV e- W. Wang, J. Chen, D. Y. Yu, B. Yang, Y. H. Wu, M. W. Zhang, F. F. Ruan, and X. H. Cai, Phys. Scr. T 144, 014023 (2011).
  WangYYJOP2009B 2009 http://dx.doi.org/10.1088/1742-6596/194/13/132032 Guided transmission of xenon ions through nanocapillaries in PC foils Foil PC 140 keV Xe7+ Y. Y. Wang, D. H. Li, Y. T. Zhao, G. Q. Xiao, Z. F. Xu, F. L. Li and X. M. Chen, J. Phys. Conf. Ser. 194, 132032 (2009).
  WangYYPhysScr2013 2013 http://dx.doi.org/10.1088/0031-8949/2013/T156/014060 Energy dependence of highly charged ions guided through nanocapillaries in polycarbonate Foil PC 200-500 keV
Xe10+
Y. Y. Wang, S. D. Liu, Y. T. Zhao, J. R. Sun, D. H. Li, J. L. Dun, X. M. Chen, and G. Q. Xiao, Phys. Scr. T 156, 014060 (2013).
  WickramarachchiNIMB2011 2011 http://dx.doi.org/10.1016/j.nimb.2010.11.089 Electron transmission through a microsize tapered glass capillary Single glass 500, 800, 1000 eV
e-
S. J. Wickramarachchi, B. S. Dassanayake, D. Keerthisinghe, A. Ayyad, and J. A. Tanis, Nucl. Instrum. Methods Phys. Res. B 269, 1248-1252 (2011).
R WickramarachchiNIMB2013 2013 http://dx.doi.org/10.1016/j.nimb.2013.03.046 Angular dependence of electron transmission through a microsized tapered glass capillary Single glass 1000 eV e- S. J. Wickramarachchi, T. Ikeda, D. Keerthisinghe, B. S. Dassanayake, and J. A. Tanis, Nucl. Instrum. Methods Phys. Res. B 317, 101-104 (2013).
R WickramarachchiPhysScr2013 2013 http://dx.doi.org/10.1088/0031-8949/2013/T156/014057 Dependence of electron transmission on charge deposited in tapered glass macrocapillaries at a tilt angle of 5.0°  Single glass 1025 eV e- S. J. Wickramarachchi, B. S. Dassanayake, D. Keerthisinghe, T. Ikeda, and J. A. Tanis, Phys. Scr. T 156, 014057 (2013).
  YokoeJPB2013 2013 http://dx.doi.org/10.1088/0953-4075/46/11/115201 Charge-state distributions of fast diatomic carbon ions and dissociated fragments passing through microcapillaries Single glass 0.48-1.92 MeV C_2^+ J. Yokoe, H. Tsuchida, K. Nishimura, R. Murakoshi, S. Mori, M. Naitoh, T. Majima, and A. Itoh, J. Phys. B 46, 115201 (2013).
  ZhangJOP2009 2009 http://dx.doi.org/10.1088/1742-6596/163/1/012092 Guiding of slow highly charged ions through insulating nano-capillaries Foil SiO2 7 keV Ne7+ H. Q. Zhang, P. Skog, and R. Schuch, J. Phys. Conf.Ser. 163, 012092 (2009).
  ZhangPRA2010 2010 http://dx.doi.org/10.1103/PhysRevA.82.052901 Dynamics of guiding highly charged ions through SiO2 nanocapillaries Foil SiO2 7 keV Ne7+ H.-Q. Zhang, P. Skog, and R. Schuch, Phys. Rev. A 82, 052901 (2010).
  ZhangPRA2012 2012 http://dx.doi.org/10.1103/PhysRevA.86.022901 Transmission of highly charged ions through mica nanocapillaries of rhombic cross section Foil mica 7-70 keV Ne7+ HQ. Zhang, N. Akram, I. L. Soroka, C. Trautmann, and R. Schuch, Phys. Rev. A 86, 022901 (2012).
  ZhangPRL2012 2012 http://dx.doi.org/10.1103/PhysRevLett.108.193202 Tailoring of keV-Ion Beams by Image Charge when Transmitting through Rhombic and Rectangular Shaped Nanocapillaries Foil mica 7 keV Ne7+ H.-Q. Zhang, N. Akram, P. Skog, I. L. Soroka, C. Trautmann, and R. Schuch, Phys. Rev. Lett. 108, 193202 (2012).
R ZhouPRA2013 2013 http://dx.doi.org/10.1103/PhysRevA.88.050901 Transmission of slow highly charged ions through glass capillaries: Role of the capillary shape Single glass 27 keV Ne9+ C. L. Zhou, M. Simon, T. Ikeda, S. Guillous, W. Iskandar, A. Méry, J. Rangama, H. Lebius, A. Benyagoub, C. Grygiel, A. Müller, M. Döbeli, J. A. Tanis, and A Cassimi, Phys. Rev. A 88, 050901 (2013).
Tag 'R' represents the work including RIKEN members.