Antiprotonic atoms - a tool for the investigation of the nuclear periphery

for PS209 collaboration

Agnieszka Trzcińska

Heavy Ion Laboratory, Warsaw University
Outline

- Antiprotonic atoms – strong interaction effects
- Information on the nuclear surface from annihilation products (f_{halo})
- Neutron density distribution from antiprotonic X rays
- Systematics of Δr_{np}: comparison with theory & other experiments
- Summary & future plans
Antiprotonic atoms

- creation: \bar{p} capture on the “high” orbit ($n_\bar{p} \approx 43 \times n_e$)
- cascade: emission of Auger electrons and X rays
Strong interaction effects

levels broadening and shift

measured in experiment: \(\Gamma_{up}, \Gamma_{low}, \epsilon \)
Annihilation products

\[Z_t N_t \]

Outline
- Antiprotonic atoms
- Strong interaction effects
- Annihilation products
- \(f_{\text{halo}} \)
- Neutron density from \(\Delta r_{\text{np}} \)
- \(f_{\text{halo}} \) vs \(\Delta r_{\text{np}} \)
- Antiprotonic X-rays ...
- Experiment
- Harvest of PS209
- Determination of \(\rho_n \)
- Neutron density – results
- \(\Delta r_{\text{np}} \) – Pb
- \(c_p = c_n \) ?
- \(\Delta r_{\text{np}} \) systematics
- Comparison with theory
- Comparison with other experiments
- Summary & conclusions
- Future
- PS209 Collaboration
Annihilation products

measured in experiment:

yield of \(\left\{ \begin{array}{l} Y_{N_t-1} \sim \rho_n(r_{\text{annihil.}}) \\ Y_{Z_t-1} \sim \rho_p(r_{\text{annihil.}}) \end{array} \right\} \)

\[f_{\text{halo}} = \frac{Y_{N_t-1}}{Y_{Z_t-1}} \cdot \frac{Z}{N} \cdot \frac{\text{Im} a_{p\bar{p}}}{\text{Im} a_{n\bar{p}}} \]

\[f_{\text{halo}} \sim \frac{\rho_n}{\rho_p} \]

at \(r \approx (r_{1/2} + 2.5) \) fm
Observations:

- strong correlation between \(f_{\text{halo}} \) and neutron energy separation
- in nuclei with \(B_n < 9 \text{ MeV} \) periphery reach in neutrons
Neutron density from Δr_{np}

$$\rho(r) = \rho_0 \left(1 + \exp\left(\frac{r - c}{a}\right)\right)^{-1}$$

$$\langle r^2 \rangle = \frac{3}{5} c^2 + \frac{7}{5} \pi^2 a^2 \Rightarrow \langle r^2 \rangle(c, a)$$

let's consider two extreme cases:

- Δr_{np} results from the half-density radii difference
 $$a_n = a_p, \quad c_n \neq c_p, \quad \text{“neutron skin”}$$
- Δr_{np} results from the surface diffuseness difference
 $$a_n \neq a_p, \quad c_n = c_p, \quad \text{“neutron halo”}$$

ρ_p known from experiments with e or μ

ρ_n calculated from Δr_{np} (under the above assumptions)

What is difference between these cases?
Neutron density from Δr_{np}

- Δr_{np} results from the half-density radii difference ($a_n = a_p$, $c_n \neq c_p$, “neutron skin”)
- Δr_{np} results from the surface diffuseness difference ($a_n \neq a_p$, $c_n = c_p$, “neutron halo”)

\[\rho_p \]
\[\rho_n \times Z/N \]

\[\langle r^2 \rangle^{1/2} \]

\[a_n = a_p \]

"neutron skin"

\[c_n = c_p \]

"neutron halo"
\[f_{\text{halo}} \textbf{vs } \Delta r_{\text{np}} \]

\[Z/N \frac{\rho_n}{\rho_p} \]

- \(48\text{Ca}\)
 - \(\Delta r = 0.16 \text{ fm}\)
- \(124\text{Sn}\)
 - \(\Delta r = 0.23 \text{ fm}\)
- \(208\text{Pb}\)
 - \(\Delta r = 0.17 \text{ fm}\)

\[c_n = c_p \]
\[a_n = a_p \]

\[\sim \sim \Delta r_{\text{np}} \text{ caused by } a_n \neq a_p \text{ rather than by } c_n \neq c_p \]
Antiprotonic X-rays ...

... another tool for the investigation of the nuclear periphery: strong interaction level widths and shifts depend on the antiproton-nucleus potential:

\[
\frac{\Gamma}{2} \sim \int \text{Im} \ V(r) \ |\Psi_{nl}(r)|^2 \ r^2 \ dr \\
\frac{\epsilon}{2} \sim \int \text{Re} \ V(r) \ |\Psi_{nl}(r)|^2 \ r^2 \ dr
\]

\[
V_{\text{opt}} = -\frac{2\pi}{\mu} \left(\bar{a}_n \rho_n(r) + \bar{a}_p \rho_p(r) \right)
\]

\[
\bar{a}_p = \bar{a}_n = 2.5 + i \ 3.4 \ \text{fm}
\]

measured in experiment: \(\Gamma_{\text{up}}, \Gamma_{\text{low}}, \epsilon \)
Harvest of the PS209 measurements

before PS209 measurements
Harvest of the PS209 measurements

- Shift (eV)
- Width (eV)

Z

0 10 20 30 40 50 60 70 80 90 100

R:\\text{Assumption}\n\frac{f_{\text{halo}}}{\Delta r_{\text{np}}}

Neutron density from
\Delta r_{\text{np}}

\frac{f_{\text{halo}}}{\Delta r_{\text{np}}}

Antiprotonic X-rays ...

Experiment

Harvest of PS209

Determination of \(\rho_n \)

Neutron density – results

\Delta r_{\text{np}} – \text{Pb}

c_p=c_n?

\Delta r_{\text{np}} \text{ systematics}

Comparison with theory

Comparison with other experiments

Summary & conclusions

Future

PS209 Collaboration

Physics with Ultra Slow Antiprotonic Beams, TOKYO, March’05

Agnieszka Trzcińska - p. 11/21
Determination of ρ_n from antiprotonic X rays

known:
- ρ_p (from electromagnet. interacting probes: e, μ)
- $V_{\text{opt}}(\rho_p, \rho_n)$

assumed:
- 2-parameter-Fermi density distribution
- $c_n = c_p$ (to be discussed)

fitted: $a_n(V_{\text{opt}}, \Gamma_{\text{low}}, \Gamma_{\text{up}}, (\epsilon))$

$$\rho_n(c_n, a_n)$$
Neutron density – results

Outline
- Antiprotonic atoms
- Strong interaction effects
- Annihilation products
- f_{halo}
- Neutron density from Δr_{np}
- Neutron density – results
- Antiprotonic X-rays...
- Experiment
- Harvest of PS209
- Determination of ρ_n
- Comparison with theory
- Comparison with other experiments
- Summary & conclusions
- Future
- PS209 Collaboration

Physics with Ultra Slow Antiprotonic Beams, TOKYO, March'05

Agnieszka Trzcińska - p. 13/21
\[\Delta r_{np} \text{ from X-ray data – } ^{208}\text{Pb example} \]

\[\rho_p(c_p,a_p), \rho_n(c_n,a_n) \implies \Delta r_{np} \]
\[\Delta r_{np} \text{ from X-ray data – } ^{208}\text{Pb example} \]

\[\rho_p(c_p,a_p), \rho_n(c_n,a_n) \implies \Delta r_{np} \]

\[\Delta r_{np} \text{ from X-ray data – } ^{208}\text{Pb example} \]

\[\rho_p(c_p,a_p), \rho_n(c_n,a_n) \implies \Delta r_{np} \]

\[L. \ Ray \ et. \ al. \ 1979 \]
\[G.W. \ Hoffmann \ et. \ al. \ 1980 \]
\[A. \ Krasznahorkay \ et. \ al. \ 1994 \]
\[V.E. \ Starodubsky \ et. \ al. \ 1994 \]
\[S. \ Kartaglidis \ et. \ al. \ 2002 \]
\[M. \ Csatlos \ et. \ al. \ 2003 \]
\[B.C. \ Clark \ et. \ al. \ 2003 \]

\[\Delta r_{np} - ^{208}\text{Pb} \]

\[c_p = c_n \]?

\[\Delta r_{np} \text{ systematics} \]

\[\text{Comparison with theory} \]

\[\text{Comparison with other experiments} \]

\[\text{Summary & conclusions} \]

\[\text{Future} \]

\[\text{PS209 Collaboration} \]
$c_p = c_n$?

![Graph showing Δr_{np} vs Δc for 208Pb]
\(\Delta r_{np} \) systematics from X-ray data

\[\rho_p(c_p,a_p), \rho_n(c_n,a_n) \implies \Delta r_{np} \]
Comparison with theory

experimental data

\[\delta = (N-Z)/A \]

\[\Delta r_{np} \]

\[f_{\text{halo}} \text{ vs } \Delta r_{np} \]

\[\Delta r_{np} - \text{Pb} \]

\[c_{\text{p}} = c_{\text{n}}? \]

\[\Delta r_{np} \text{ systematics} \]

\[\text{Comparison with theory} \]

\[\text{Comparison with other experiments} \]

\[\text{Summary & conclusions} \]

\[\text{Future} \]

\[\text{PS209 Collaboration} \]
Comparison with theory

HF and HFB calculations

\(\frac{d}{\delta} = (N-Z)/A \)

- HFB [SMO95] (SkP)
- HF [BRO00] (SkX)
- HF [HOF98] (SLy4)

fit to HFB (SkP) data

PS209 (antiprotons)
Comparison with theory

![Graph showing comparison with theory](image-url)

- **Droplet model - standard**
 \[\Delta r = -0.019 + 0.718 \times \delta \]

- **PS209 fit**
 \[\Delta r = -0.034 + 0.89 \times \delta \]
Comparison with other experiments

PS209 data

Comparison with theory

Comparison with other experiments

Summary & conclusions

Future

PS209 Collaboration
Comparison with other experiments

other experiments (hadron scattering data)

\[\Delta r_{np} \text{ vs } \delta = \frac{(N-Z)}{A} \]

- Hadron scattering:
 - even nuclei
 - odd nuclei

- Fit to the data (even)
- PS209 (antiprotons)
Summary & conclusions

Two experimental methods using antiprotonic atoms were applied to investigate nuclear periphery:
- **radiochemical method**: \(\rho_n / \rho_p \approx r \approx c_p + 2.5 \) fm
- **antiprotonic X rays**: \((\rho_p + \rho_n) \approx r \approx c_p + 1.5\) fm

Reach set of precise data collected: material for theory (e.g. optical potential)

Experimental data were interpreted using 2pF density distribution

Neutron density distribution deduced for 26 isotopes

\(\Delta r_{np} \) systematics deduced from the data

excellent agreement of \(\Delta r_{np} \) from antiprotonic X rays and hadron scattering for \(^{208}\)Pb

good agreement of \(\Delta r_{np}(\delta) \) established from antiprotonic data and theoretical models

fair agreement with the data from other experiments (hadron scattering)

What next? \(\rightsquigarrow \) Future...
Future

What else is worth doing?

- measurements for deformed even-A nuclei (LS effect?)
- measurements for odd-A nuclei (e.g. Sn isotopes) – ??
- detailed study of Ca (double-magic isotopes 40Ca and 48Ca and possible measurement 3 levels for each isotope)
- investigation the properties of deeply bound states via E2 resonance
- search for a quasi-bound $\bar{p}p$ state - ??

Possibilities of measurements: AD @ CERN,
FLAIR @ Darmstadt
PS209 Collaboration

Warsaw University
Heavy Ion Laboratory
T. Czosnyka, J. Iwanicki, J. Jastrzębski, M. Kisieliński, P. Lubiński,
P. Napiorkowski, L. Pieńkowski, A. Stolarz, A. Trzcińska

Institute of Exeprimental Physics
K. Gulda, W. Kurcewicz

Technical University, Munich
T. von Egidy, F.J. Hartmann, B. Ketzer, R. Schmidt

Physics Departament, Silesian University, Katowice
B. Kłos

Sołtan Institute for Nuclear Studies
R. Smolańczuk, S. Wycech

CERN
E. Widmann