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01 Heterogeneous Quantum Repeater Hardware

This project is focusing on complex, realistic hardware models for quantum repeaters. We
are developing detailed simulations of networks of repeater nodes, simulating both the physical
node design and the communication protocols used. We will use the specific design of
superconducting qubits coupled to nitrogen-vacancy diamond ensembles, and simulate the rate of
generation of usable entangled links within the network for a range of parameters. The results of the
simulation will enable us to evaluate the medium-scale performance of these existing small-scale
technologies, laying out a specific roadmap for experimental improvement that will lead to network
deployment.

Our initial step in this project has been studying entanglement purification protocols adapted
for the proposed hardware scheme. We found the double-selection purification scheme of Fujii and
Yamamoto [PRA 80, 2009] to be an attractive fit due to its robustness against local gate errors,
which are expected to be common in early experimental demonstrations. Our detailed simulations,
however, have found that operation of the protocol is not robust; it is very sensitive to conditions on
the network. If one communication session is forced to wait due to the activity of another, the
throughput of double-selection fares poorly. Moreover, double-selection is very sensitive to the
availability of resources. Thus, although it is attractive, it must be used with care in order to benefit
the network performance
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Developments in Resource optimisation for topological quantum computing

Resource optimisation in large scale quantum computing is of huge importance to the
construction of a large-scale, commercially viable quantum computer. Solving quantum problems,
intractable to classical supercomputers, requires a very large number of physical qubits and a large
amount of computational time. Coupled with the necessity of quantum error correction, the number
of qubits necessary to factor large prime numbers or simulate classically intractable quantum
systems could easily reach one billion.

Recent results (Devitt et. al. arXiv:1212.4934) has illustrated that the biggest hurdle to
reducing the total number of physical resources for a large scale architecture may have little to do
with the actual quantum hardware and more to do with exactly how we compile and execute
fault-tolerant quantum algorithms. The classical problem of quantum circuit compilation and
compactification has the potential to reduce physical demands on large scale computer
significantly. More importantly, the manner in which we implement large scale computation (hamely
through the model of topological computation) divorces the classical problem of circuit compilation
from the underlying physics of a quantum computer.

For this reason we have actively been engaging with the classical computer science
community in an attempt to solve this problem. Notonly have we found new methods for
topological circuit compilation (Fowler and Devitt, arXiv:1209.0510, Fowler, Devitt and Jones,
arXiv:1301.7107) but we have been actively engaging the computer science community by
introducing these ideas within their community (Palar, Devitt, Nemoto, Polian, Proc. NanoArch'12),
(Devitt and Nemoto, Proc. ATS'12), including a special session on programming quantum computers
held this year at the Asian Test Symposium in Niigata (ATS'12).

We feel that continued engagement with classical computer scientists will open up a new
range of possibility that will help reduce the resources for a large scale computer and bring quantum
computing one step closer to reality.
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