RIKEN Seminar

!! Postponed !!

Time & Date : Wednesday, January 12nd, 2011, PM 2:00-3:00

Place : Seminar room, 2nd floor, The Nanoscience Joint Laboratory

Language: English

PM 2:00-2:40

"Li-ion battery : a viewpoint of surfaces and interfaces"

Prof. Taro Hitosugi

WPI Advanced Institute for Materials Research, Tohoku University

Li-ion battery is now an indispensable component which is widely used in lap-top computers, cellular phones, automobiles and etc. $LiCoO_2$, in bulk powder form, is, at present, the most commonly used cathode material for commercial Li-ion batteries. In the battery operation process, the control of Li-ion at the surfaces and interfaces of electrodes plays an important role. Further, $LiCoO_2$ contains CoO_2 layer which is known to exhibit highly electron correlated behavior, e.g. superconductivity and large thermoelectric effect.

I will present our recent results on the deposition of epitaxial thin films and attempts to understand this complex material from the viewpoint of surfaces and interfaces.

PM 2:40-3:00

"Atomically Resolved Electronic Structure of SrTiO₃ Thin Film Surfaces by STM"

Dr. Katsuya Iwaya

WPI Advanced Institute for Materials Research, Tohoku University

Strontium titanate SrTiO₃ is known to demonstrate disparate properties such as superconductivity, photoctalysis, and ferroelectricity. Recently, SrTiO₃ has drawn increasing attention due to the discovery of metallic and magnetic interfaces between LaAIO₃ and SrTiO₃. It is widely accepted that oxygen vacancies play a crucial role in the electronic properties of such SrTiO₃-based heterostructures and those of the SrTiO₃ substrate itself. It is therefore fundamentally interesting to investigate how the amount of oxygen vacancies affects the electronic states of SrTiO₃ surfaces at the atomic scale. In this talk, I will show how different the electronic states of SrTiO₃ surfaces can be from those of the bulk, using a newly developed low-temperature STM combined with pulsed laser deposition system.

Contact : Taketoshi Minato (Kim Surface & Interface Science Lab.) Ext. 8713 tminato @riken.jp

次世代ナノサイエンステクノロジー研究会 理研セミナーのお知らせ

!!延期になりました!! 日時:平成23年1月12日(水) 14-15時

場所:ナノサイエンス実験棟 2階 セミナー室 使用言語:英語

14:00-14:40

"Li-ion battery : a viewpoint of surfaces and interfaces"

一杉 太郎 准教授

<u> 東北大学 原子分子材料科学高等研究機構</u>

Li-ion battery is now an indispensable component which is widely used in lap-top computers, cellular phones, automobiles and etc. $LiCoO_2$, in bulk powder form, is, at present, the most commonly used cathode material for commercial Li-ion batteries. In the battery operation process, the control of Li-ion at the surfaces and interfaces of electrodes plays an important role. Further, $LiCoO_2$ contains CoO_2 layer which is known to exhibit highly electron correlated behavior, e.g. superconductivity and large thermoelectric effect.

I will present our recent results on the deposition of epitaxial thin films and attempts to understand this complex material from the viewpoint of surfaces and interfaces.

14:40-15:00 **"Atomically Resolved Electronic Structure** of SrTiO₃ Thin Film Surfaces by STM"

岩谷 克也 助教

東北大学原子分子材料科学高等研究機構

Strontium titanate $SrTiO_3$ is known to demonstrate disparate properties such as superconductivity, photoctalysis, and ferroelectricity. Recently, $SrTiO_3$ has drawn increasing attention due to the discovery of metallic and magnetic interfaces between LaAlO₃ and $SrTiO_3$. It is widely accepted that oxygen vacancies play a crucial role in the electronic properties of such $SrTiO_3$ -based heterostructures and those of the $SrTiO_3$ substrate itself. It is therefore fundamentally interesting to investigate how the amount of oxygen vacancies affects the electronic states of $SrTiO_3$ surfaces at the atomic scale. In this talk, I will show how different the electronic states of $SrTiO_3$ surfaces can be from those of the bulk, using a newly developed low-temperature STM combined with pulsed laser deposition system.

問い合わせ:湊丈俊(Kim表面界面科学研究室) 内線 8713 tminato @riken.jp