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 The control of quantum dynamics through the coherent feature of laser pulses has very important 
applications in various fields. Many of these applications involve processes that occur at different time scales 
and efficient control is usually needed to balance the dynamics of the different time scales. For instance, 
control of the quantum dynamics of chemical reactions has been an exciting goal of chemistry and ultrafast 
physics. Such a process naturally involves both electron and nuclear motion. On the one hand, femtosecond 
chemistry has made remarkable advances in controlling the pathway of molecular fragmentation using an 
optimally-shaped multicycle pulse. On the other hand, the advent of carrier-envelope phase (CEP) stabilized 
few-cycle (~5 fs) pulses and attosecond pulses has provided a robust tool for steering electronic dynamics on 
the attosecond time scale. An interesting question therefore is how to efficiently steer both electronic and 
molecular motion by combining these two developments. 

    It has been demonstrated that, using a CEP stabilized few-cycle pulse, the electron wavepacket can be 
localized to a specific nucleus and therefore exhibits asymmetric electron localization for hydrogen 
molecules (or its isotopes) [1]. Other approaches of electron localization have also been reported, that 
includes synthesizing a fundamental laser with another extreme ultraviolet or near infrared probe pulse. 
However, the localization asymmetry of the total dissociation fragments by a few-cycle fundamental pulse is 
very small (asymmetry parameter ~0.03) even though the kinetic energy release (KER) spectra exhibit large 
asymmetry. If the molecular wavepacket could respond to the electronic motion, it would be possible to 
efficiently control the electron location in a very direct way. Nevertheless, precise steering of the electronic 
motion requires the control of sub-cycle waveforms; thus, a short few-cycle pulse, e.g., 3.5-fs, is desired. On 
the contrary, the vibration period is longer than 14 fs even for the simplest molecular ion, H2

+. The nuclear 
motion is too slow to respond directly to electronic motion and the few-cycle pulse. To meet this challenge, 
in our work, we propose and numerically demonstrate a novel scheme with the aim of effectively steering 
both the electronic and molecular motion of hydrogen molecules and its isotopes. Our scheme is based on the 
idea of sub-cycle waveform shaping (SWS) by synthesizing coherent multicycle infrared (IR) pulses of 
different wavelengths. 

    With the development of laser techniques, it has become possible to synthesize and control two (or three) 
coherent light sources outputted from different laser systems, such as, fiber lasers and optical parameter 
amplifier (OPA) or optical parameter chirp pulse amplifier (OPCPA) systems. Our basic idea of SWS stems 
from the temporal profile modulation by the beat wave of two IR waves. By controlling the amplitudes and 
phases of two IR pulses, the waveform of the synthesized pulse can be precisely manipulated. As shown in 
Fig. 1(a), except for the weak shoulder peaks, the field synthesized with a 15-fs fundamental (800 nm) pulse 
and a 25-fs IR (1200 nm) pulse is almost equivalent to a 4-fs fundamental one-color (OC) field, which thus 
enables precise control of the electronic motion. Moreover, the synthesized pulse contains shoulder peaks 
maintaining duration of about 15 fs, which is comparable to the vibration period of H2

+. The nuclear motion 
can respond to the shoulder pulse. Therefore, we can expect more effective control of both the electronic and 
molecular motion using this SWS field. We need to emphasize that to precisely control the electronic 
dynamics, it is important to keep the waveform of the SWS pulse similar to that of an OC few-cycle (~5 fs) 
pulse. This condition requires the pulse duration of the synthesized IR pulse to be less than 30 fs. 

     Figure 1(b) shows the electron localization asymmetry as a function of the CEP. The results are obtained 
by a numerical simulation based on the time-dependent Schrodinger equation [2]. The solid magenta and 
blue lines correspond to two typical cases: the interaction of the SWS pulse with the 4th and 8th vibrational 
initial states of H2

+, respectively. For comparison, a similar simulation was performed for a 5-fs fundamental 
field and the results are presented by the dashed red and green lines in Fig. 1(b). In both situations, we can 
observe sensitive CEP dependence of the electron localization. Nevertheless, in comparison with the 5-fs OC 
pulse, the asymmetry amplitude in the SWS pulse is two and three fold higher for the 8th and 4th vibrational 
states, respectively. Moreover, note that the preparation mechanism of H2

+ generally indicates an incoherent 
Franck-Condon (FC) distribution of vibrational states in experiments. Thus it is necessary to average the 
observables over the initial vibrational states weighted by FC factors, which is called FC averaging. Figure 1 



(c) shows the FC-averaged localization asymmetry. Very distinct result can be observed. In the OC field, the 
asymmetry has been significantly smeared out (dashed red line). In contrast, very large asymmetry with an 
amplitude of 0.35 can still be obtained in the SWS pulse (solid blue line), which corresponds to an electron 
localization probability of about 68% of all fragmentation events. We have verified this result by changing 
the intensity of the OC fundamental pulse from 2×1013 to 2×1014 W/cm2 and the pulse duration from 3 to 10 
fs. But the FC-averaged asymmetry in the OC few-cycle pulse does not change significantly and is below 
0.06, which is only one-sixth of that in the SWS pulse. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Even though the above results are obtained with hydrogen molecules, state-of-the-art laser technology 
has made it possible to synthesize and stabilize the phases of multicolor coherent pulses, such as the CEP-
stabilized pump, signal and idle lights of optical parametric synthesizers and supercontinuum optical field 
synthesizers. We anticipate an extension of our concept to efficiently control the electron localization of 
more complex molecules or other laser-material interaction processes, e.g., the electron localization of CO 
[3] and photoemission from a metal nanotip [4], by multicolor SWS. 
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Fig. 1, (a) Temporal profiles of laser amplitude of the 5-fs fundamental (800 nm) OC pulse (red dashed line) and SWS pulse 
(blue line, 15 fs/800 nm + 25 fs/1200 nm).  (b) CEP dependence of the electron localization asymmetry. The solid magenta 
and blue lines correspond to the interaction of the SWS pulse with the 4th and 8th vibrational states of H2

+, respectively. The 
dashed red and green lines correspond to the interaction of the 5-fs OC pulse with the 4th and 8th vibrational states of H2

+, 
respectively. (c) CEP dependence of the FC-averaged localization asymmetry for the 5-fs OC field (red dashed line) and 
SWS pulse (solid blue line).  
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